{"title":"平面上的弱1-凸集","authors":"Тетяна Осіпчук, Максим Володимирович Ткачук","doi":"10.15673/tmgc.v16i1.2440","DOIUrl":null,"url":null,"abstract":"The present work considers the properties of generally convex sets in the plane known as weakly 1-convex. An open set is called weakly 1-convex if for any boundary point of the set there exists a straight line passing through this point and not intersecting the given set. A closed set is called weakly 1-convex if it is approximated from the outside by a family of open weakly 1-convex sets. A point of the complement of a set to the whole plane is called a 1-nonconvexity point of the set if any straight passing through the point intersects the set. It is proved that if an open, weakly 1-convex set has a non-empty set of 1-nonconvexity points, then the latter set is also open. It is also shown that the non-empty interior of a closed, weakly 1-convex set in the plane is weakly 1-convex.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weakly 1-convex sets in the plane\",\"authors\":\"Тетяна Осіпчук, Максим Володимирович Ткачук\",\"doi\":\"10.15673/tmgc.v16i1.2440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work considers the properties of generally convex sets in the plane known as weakly 1-convex. An open set is called weakly 1-convex if for any boundary point of the set there exists a straight line passing through this point and not intersecting the given set. A closed set is called weakly 1-convex if it is approximated from the outside by a family of open weakly 1-convex sets. A point of the complement of a set to the whole plane is called a 1-nonconvexity point of the set if any straight passing through the point intersects the set. It is proved that if an open, weakly 1-convex set has a non-empty set of 1-nonconvexity points, then the latter set is also open. It is also shown that the non-empty interior of a closed, weakly 1-convex set in the plane is weakly 1-convex.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v16i1.2440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v16i1.2440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The present work considers the properties of generally convex sets in the plane known as weakly 1-convex. An open set is called weakly 1-convex if for any boundary point of the set there exists a straight line passing through this point and not intersecting the given set. A closed set is called weakly 1-convex if it is approximated from the outside by a family of open weakly 1-convex sets. A point of the complement of a set to the whole plane is called a 1-nonconvexity point of the set if any straight passing through the point intersects the set. It is proved that if an open, weakly 1-convex set has a non-empty set of 1-nonconvexity points, then the latter set is also open. It is also shown that the non-empty interior of a closed, weakly 1-convex set in the plane is weakly 1-convex.