关于π^3的数列的余数

IF 0.4 4区 数学 Q4 MATHEMATICS
Xiao Zhang, Chao-Ping Chen
{"title":"关于π^3的数列的余数","authors":"Xiao Zhang, Chao-Ping Chen","doi":"10.47443/cm.2022.046","DOIUrl":null,"url":null,"abstract":"The main motivation for obtaining the results reported in the present paper comes from the following existing identity: We obtain the asymptotic expansion of the remainder R n as given below: We also give a recursive relation for determining the coefficients involved in the obtained expansion. Moreover, we establish an upper bound and a lower bound on the remainder R n . As an application of the obtained bounds, we give an approximate value of π .","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the remainder of a series representation for π^3\",\"authors\":\"Xiao Zhang, Chao-Ping Chen\",\"doi\":\"10.47443/cm.2022.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main motivation for obtaining the results reported in the present paper comes from the following existing identity: We obtain the asymptotic expansion of the remainder R n as given below: We also give a recursive relation for determining the coefficients involved in the obtained expansion. Moreover, we establish an upper bound and a lower bound on the remainder R n . As an application of the obtained bounds, we give an approximate value of π .\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2022.046\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2022.046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了余数rn的渐近展开式,并给出了确定所得到展开式中所涉及系数的递推关系。此外,我们建立了余项rn的上界和下界。作为得到的界的应用,我们给出了π的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the remainder of a series representation for π^3
The main motivation for obtaining the results reported in the present paper comes from the following existing identity: We obtain the asymptotic expansion of the remainder R n as given below: We also give a recursive relation for determining the coefficients involved in the obtained expansion. Moreover, we establish an upper bound and a lower bound on the remainder R n . As an application of the obtained bounds, we give an approximate value of π .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信