BC2N的高压相稳定性、弹性各向异性及电子性能

A. Habanyama, G. Samukonga, N. K. Mumba
{"title":"BC2N的高压相稳定性、弹性各向异性及电子性能","authors":"A. Habanyama, G. Samukonga, N. K. Mumba","doi":"10.5897/ijps2020.4929","DOIUrl":null,"url":null,"abstract":"Crystal lattice structure searching by Particle Swarm Optimization (PSO) and first-principles structural optimization have been used to explore polymorphs of BC2N, possessing sp3 hybridization, under a varying applied hydrostatic pressure. Two low Gibbs free energy structures were identified: one with a primitive orthorhombic structure and Space Group, Pmm2, and the other with a primitive tetragonal structure and Space Group, P m2. Dynamical and mechanical stabilities of the Pmm2, orthorhombic BC2N (o-BC2N) structure were established using its phonon dispersions and elastic constants. The bulk modulus of this predicted BC2N phase was 377.15 GPa, which indicates a super-hard compound. The material is brittle with a B/G ratio of 0.911 and a low degree of elastic anisotropy with a Universal Elastic Anisotropy Index of only 0.774%. Calculations of the electronic band structure demonstrated that the material is a direct band gap semiconductor with a band gap of 1.731 eV at zero applied pressure. The band gap increases monotonically with increased applied pressure and saturates to a value of about 1.756 eV above 1500 kbars; the hydrostatic pressure coefficients associated with this process were determined.","PeriodicalId":14294,"journal":{"name":"International Journal of Physical Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High pressure phase stability, elastic anisotropy and electronic properties of BC2N\",\"authors\":\"A. Habanyama, G. Samukonga, N. K. Mumba\",\"doi\":\"10.5897/ijps2020.4929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystal lattice structure searching by Particle Swarm Optimization (PSO) and first-principles structural optimization have been used to explore polymorphs of BC2N, possessing sp3 hybridization, under a varying applied hydrostatic pressure. Two low Gibbs free energy structures were identified: one with a primitive orthorhombic structure and Space Group, Pmm2, and the other with a primitive tetragonal structure and Space Group, P m2. Dynamical and mechanical stabilities of the Pmm2, orthorhombic BC2N (o-BC2N) structure were established using its phonon dispersions and elastic constants. The bulk modulus of this predicted BC2N phase was 377.15 GPa, which indicates a super-hard compound. The material is brittle with a B/G ratio of 0.911 and a low degree of elastic anisotropy with a Universal Elastic Anisotropy Index of only 0.774%. Calculations of the electronic band structure demonstrated that the material is a direct band gap semiconductor with a band gap of 1.731 eV at zero applied pressure. The band gap increases monotonically with increased applied pressure and saturates to a value of about 1.756 eV above 1500 kbars; the hydrostatic pressure coefficients associated with this process were determined.\",\"PeriodicalId\":14294,\"journal\":{\"name\":\"International Journal of Physical Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/ijps2020.4929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/ijps2020.4929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用粒子群优化(PSO)和第一性原理结构优化方法对具有sp3杂化的BC2N在不同静水压力下的多晶结构进行了研究。确定了两种低吉布斯自由能结构:一种是原始正交结构和空间群Pmm2,另一种是原始四方结构和空间群pm2。利用声子色散和弹性常数建立了Pmm2、正交BC2N (o-BC2N)结构的动力学和力学稳定性。预测的BC2N相体积模量为377.15 GPa,为超硬化合物。材料呈脆性,B/G比为0.911,弹性各向异性程度低,通用弹性各向异性指数仅为0.774%。电子能带结构的计算表明,该材料为直接带隙半导体,在零施加压力下带隙为1.731 eV。带隙随着施加压力的增加而单调增加,并在1500 kbar以上达到约1.756 eV的饱和值;确定了与此过程相关的静水压力系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High pressure phase stability, elastic anisotropy and electronic properties of BC2N
Crystal lattice structure searching by Particle Swarm Optimization (PSO) and first-principles structural optimization have been used to explore polymorphs of BC2N, possessing sp3 hybridization, under a varying applied hydrostatic pressure. Two low Gibbs free energy structures were identified: one with a primitive orthorhombic structure and Space Group, Pmm2, and the other with a primitive tetragonal structure and Space Group, P m2. Dynamical and mechanical stabilities of the Pmm2, orthorhombic BC2N (o-BC2N) structure were established using its phonon dispersions and elastic constants. The bulk modulus of this predicted BC2N phase was 377.15 GPa, which indicates a super-hard compound. The material is brittle with a B/G ratio of 0.911 and a low degree of elastic anisotropy with a Universal Elastic Anisotropy Index of only 0.774%. Calculations of the electronic band structure demonstrated that the material is a direct band gap semiconductor with a band gap of 1.731 eV at zero applied pressure. The band gap increases monotonically with increased applied pressure and saturates to a value of about 1.756 eV above 1500 kbars; the hydrostatic pressure coefficients associated with this process were determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Physical Sciences
International Journal of Physical Sciences 综合性期刊-综合性期刊
自引率
0.00%
发文量
4
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信