使用脂质内改善抗癌纳米药物的递送:对RES清除和Toxi, EPR和免疫调节的影响

Li Liu, Chien Ho
{"title":"使用脂质内改善抗癌纳米药物的递送:对RES清除和Toxi, EPR和免疫调节的影响","authors":"Li Liu, Chien Ho","doi":"10.33696/nanotechnol.2.023","DOIUrl":null,"url":null,"abstract":"Encapsulation of therapeutic molecules (e.g., small molecule inhibitors, mRNA, siRNA, aptamers, etc.) into nanomaterials can improve the solubility and blood circulation of the drugs, alter their biodistribution, decrease their toxicities, overcome drug resistance, and facilitate their entry into target cells [1]. The development of anti-cancer nanodrugs has been the focus of intense study for decades. Several anti-cancer nanodrugs have been approved for clinical use all over the world [2]. These have contributed greatly to a lower death rate from some cancers, and thus are widely used. However, an extensive analysis of anti-cancer nanodrugs found an extremely low efficiency of delivery to the tumor, i.e., less than 1% [2]. This is obviously very wasteful and contributes greatly to the increasing cost of health care [1]. To date, most nanodrugs have been focused on cancer research, but the techniques have been translated for many other applications, e.g., vaccines, cardiovascular disease, and neuropathy disease [3-6].","PeriodicalId":94095,"journal":{"name":"Journal of nanotechnology and nanomaterials","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Intralipid to Improve Delivery of Anti-Cancer Nanodrugs: Effects on RES Clearance and Toxi city, EPR, and Immune Modulation\",\"authors\":\"Li Liu, Chien Ho\",\"doi\":\"10.33696/nanotechnol.2.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Encapsulation of therapeutic molecules (e.g., small molecule inhibitors, mRNA, siRNA, aptamers, etc.) into nanomaterials can improve the solubility and blood circulation of the drugs, alter their biodistribution, decrease their toxicities, overcome drug resistance, and facilitate their entry into target cells [1]. The development of anti-cancer nanodrugs has been the focus of intense study for decades. Several anti-cancer nanodrugs have been approved for clinical use all over the world [2]. These have contributed greatly to a lower death rate from some cancers, and thus are widely used. However, an extensive analysis of anti-cancer nanodrugs found an extremely low efficiency of delivery to the tumor, i.e., less than 1% [2]. This is obviously very wasteful and contributes greatly to the increasing cost of health care [1]. To date, most nanodrugs have been focused on cancer research, but the techniques have been translated for many other applications, e.g., vaccines, cardiovascular disease, and neuropathy disease [3-6].\",\"PeriodicalId\":94095,\"journal\":{\"name\":\"Journal of nanotechnology and nanomaterials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nanotechnology and nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/nanotechnol.2.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotechnology and nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/nanotechnol.2.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将治疗性分子(如小分子抑制剂、mRNA、siRNA、适体等)包封在纳米材料中,可以改善药物的溶解度和血液循环,改变药物的生物分布,降低药物的毒性,克服耐药性,促进药物进入靶细胞[1]。几十年来,纳米抗癌药物的开发一直是人们关注的焦点。几种抗癌纳米药物已经在世界范围内被批准用于临床[2]。这大大降低了某些癌症的死亡率,因此被广泛使用。然而,对抗癌纳米药物的广泛分析发现,其向肿瘤的递送效率极低,即不到1%[2]。这显然是非常浪费的,并且极大地增加了医疗保健成本[1]。迄今为止,大多数纳米药物都集中在癌症研究上,但这些技术已经被转化为许多其他应用,例如疫苗、心血管疾病和神经病变疾病[3-6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Intralipid to Improve Delivery of Anti-Cancer Nanodrugs: Effects on RES Clearance and Toxi city, EPR, and Immune Modulation
Encapsulation of therapeutic molecules (e.g., small molecule inhibitors, mRNA, siRNA, aptamers, etc.) into nanomaterials can improve the solubility and blood circulation of the drugs, alter their biodistribution, decrease their toxicities, overcome drug resistance, and facilitate their entry into target cells [1]. The development of anti-cancer nanodrugs has been the focus of intense study for decades. Several anti-cancer nanodrugs have been approved for clinical use all over the world [2]. These have contributed greatly to a lower death rate from some cancers, and thus are widely used. However, an extensive analysis of anti-cancer nanodrugs found an extremely low efficiency of delivery to the tumor, i.e., less than 1% [2]. This is obviously very wasteful and contributes greatly to the increasing cost of health care [1]. To date, most nanodrugs have been focused on cancer research, but the techniques have been translated for many other applications, e.g., vaccines, cardiovascular disease, and neuropathy disease [3-6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信