{"title":"受限分区问题的基本解","authors":"N. Metropolis, P.R. Stein","doi":"10.1016/S0021-9800(70)80091-6","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper deals with an apparently hitherto untreated problem in the theory of restricted partitions: What is the number <em>T<sub>n</sub><sup>(r)</sup></em> of distinct partitions of the composite integer <em>nr</em> that can be made by partwise addition of <em>n</em>—not necessarily distinct—partitions of <em>r</em>? The answer is given in the form of a finite series of binomial coefficients multiplied by certain integer coefficients which dependend only on <em>r</em>:</p><p><span><span><span><math><mrow><msubsup><mi>T</mi><mi>n</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mstyle><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mo>−</mo><mi>g</mi><mo>−</mo><mn>1</mn></mrow></munderover><mrow><msubsup><mi>c</mi><mi>i</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>g</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>g</mi><mo>+</mo><mi>i</mi></mrow></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>,</mo><mo>where</mo><mi>g</mi><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow><mo>]</mo></mrow></mrow></mstyle></mrow></math></span></span></span></p><p>In general the non-vanishing <em>c<sub>i</sub><sup>(r)</sup></em> must be determined by direct calculation; in this paper we give them for all <em>r</em>≤11. Several other interpretations of <em>T<sub>n</sub><sup>(r)</sup></em> are given, and some additional open questions concerning the interpretation of the results are discussed.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 365-376"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80091-6","citationCount":"2","resultStr":"{\"title\":\"An elementary solution to a problem in restricted partitions\",\"authors\":\"N. Metropolis, P.R. Stein\",\"doi\":\"10.1016/S0021-9800(70)80091-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper deals with an apparently hitherto untreated problem in the theory of restricted partitions: What is the number <em>T<sub>n</sub><sup>(r)</sup></em> of distinct partitions of the composite integer <em>nr</em> that can be made by partwise addition of <em>n</em>—not necessarily distinct—partitions of <em>r</em>? The answer is given in the form of a finite series of binomial coefficients multiplied by certain integer coefficients which dependend only on <em>r</em>:</p><p><span><span><span><math><mrow><msubsup><mi>T</mi><mi>n</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mstyle><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mo>−</mo><mi>g</mi><mo>−</mo><mn>1</mn></mrow></munderover><mrow><msubsup><mi>c</mi><mi>i</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>g</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>g</mi><mo>+</mo><mi>i</mi></mrow></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>,</mo><mo>where</mo><mi>g</mi><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow><mo>]</mo></mrow></mrow></mstyle></mrow></math></span></span></span></p><p>In general the non-vanishing <em>c<sub>i</sub><sup>(r)</sup></em> must be determined by direct calculation; in this paper we give them for all <em>r</em>≤11. Several other interpretations of <em>T<sub>n</sub><sup>(r)</sup></em> are given, and some additional open questions concerning the interpretation of the results are discussed.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 4\",\"pages\":\"Pages 365-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80091-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An elementary solution to a problem in restricted partitions
The present paper deals with an apparently hitherto untreated problem in the theory of restricted partitions: What is the number Tn(r) of distinct partitions of the composite integer nr that can be made by partwise addition of n—not necessarily distinct—partitions of r? The answer is given in the form of a finite series of binomial coefficients multiplied by certain integer coefficients which dependend only on r:
In general the non-vanishing ci(r) must be determined by direct calculation; in this paper we give them for all r≤11. Several other interpretations of Tn(r) are given, and some additional open questions concerning the interpretation of the results are discussed.