线性时序逻辑中本体中介查询fo -可重写性的决定

Time Pub Date : 2021-01-01 DOI:10.4230/LIPIcs.TIME.2021.10
V. Ryzhikov, Yury Savateev, M. Zakharyaschev
{"title":"线性时序逻辑中本体中介查询fo -可重写性的决定","authors":"V. Ryzhikov, Yury Savateev, M. Zakharyaschev","doi":"10.4230/LIPIcs.TIME.2021.10","DOIUrl":null,"url":null,"abstract":"11 Our concern is the problem of determining the data complexity of answering an ontology-mediated 12 query (OMQ) given in linear temporal logic LTL over ( Z , < ) and deciding whether it is rewritable to an 13 FO ( < )-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity 14 and FO-definability of regular languages, OMQ answering in AC 0 , ACC 0 and NC 1 coincides 15 with FO ( <, ≡ )-rewritability using unary predicates x ≡ 0 (mod n ), FO ( <, MOD )-rewritability, and 16 FO ( RPR )-rewritability using relational primitive recursion, respectively. We then show that deciding 17 FO ( < )-, FO ( <, ≡ )- and FO ( <, MOD )-rewritability of LTL OMQs is ExpSpace -complete, and that 18 these problems become PSpace -complete for OMQs with a linear Horn ontology and an atomic 19 query, and also a positive query in the cases of FO ( < )- and FO ( <, ≡ )-rewritability. Further, we 20 consider FO ( < )-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for 21 which deciding it is PSpace -, Π p 2 - and coNP -complete. 22","PeriodicalId":75226,"journal":{"name":"Time","volume":"49 1","pages":"10:1-10:15"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic\",\"authors\":\"V. Ryzhikov, Yury Savateev, M. Zakharyaschev\",\"doi\":\"10.4230/LIPIcs.TIME.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"11 Our concern is the problem of determining the data complexity of answering an ontology-mediated 12 query (OMQ) given in linear temporal logic LTL over ( Z , < ) and deciding whether it is rewritable to an 13 FO ( < )-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity 14 and FO-definability of regular languages, OMQ answering in AC 0 , ACC 0 and NC 1 coincides 15 with FO ( <, ≡ )-rewritability using unary predicates x ≡ 0 (mod n ), FO ( <, MOD )-rewritability, and 16 FO ( RPR )-rewritability using relational primitive recursion, respectively. We then show that deciding 17 FO ( < )-, FO ( <, ≡ )- and FO ( <, MOD )-rewritability of LTL OMQs is ExpSpace -complete, and that 18 these problems become PSpace -complete for OMQs with a linear Horn ontology and an atomic 19 query, and also a positive query in the cases of FO ( < )- and FO ( <, ≡ )-rewritability. Further, we 20 consider FO ( < )-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for 21 which deciding it is PSpace -, Π p 2 - and coNP -complete. 22\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"49 1\",\"pages\":\"10:1-10:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们关注的问题是确定回答线性时间逻辑LTL (Z, <)中给定的本体介导的12查询(OMQ)的数据复杂性,并确定它是否可重写为13 FO(<)-查询,可能使用额外的谓词。首先,我们观察到,根据规则语言的电路复杂度14和FO-可定义性,在AC 0、ACC 0和NC 1中的OMQ应答分别符合FO(<,≡)-使用一元谓词x≡0 (mod n)的可重写性、FO (<, mod)-可重写性和16 FO (RPR)-使用关系原语递归的可重写性。然后,我们证明了决定LTL omq的FO (<)-, FO(<,≡)-和FO (<, MOD)-可重写性是ExpSpace完全的,并且这些问题对于具有线性Horn本体和原子查询的omq来说是PSpace完全的,并且在FO(<)-和FO(<,≡)-可重写性的情况下也是一个正查询。进一步,我们20考虑了具有二元子句本体的OMQ的FO(<)-可重写性,并确定了OMQ类21,确定其为PSpace -, Π p 2 -和coNP -完全。22
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic
11 Our concern is the problem of determining the data complexity of answering an ontology-mediated 12 query (OMQ) given in linear temporal logic LTL over ( Z , < ) and deciding whether it is rewritable to an 13 FO ( < )-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity 14 and FO-definability of regular languages, OMQ answering in AC 0 , ACC 0 and NC 1 coincides 15 with FO ( <, ≡ )-rewritability using unary predicates x ≡ 0 (mod n ), FO ( <, MOD )-rewritability, and 16 FO ( RPR )-rewritability using relational primitive recursion, respectively. We then show that deciding 17 FO ( < )-, FO ( <, ≡ )- and FO ( <, MOD )-rewritability of LTL OMQs is ExpSpace -complete, and that 18 these problems become PSpace -complete for OMQs with a linear Horn ontology and an atomic 19 query, and also a positive query in the cases of FO ( < )- and FO ( <, ≡ )-rewritability. Further, we 20 consider FO ( < )-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for 21 which deciding it is PSpace -, Π p 2 - and coNP -complete. 22
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信