基于周期调整时空核密度估计的预测犯罪热点分析方法

IF 2.7 Q1 GEOGRAPHY
Ya Han, Yujie Hu, Haojie Zhu, Fahui Wang
{"title":"基于周期调整时空核密度估计的预测犯罪热点分析方法","authors":"Ya Han, Yujie Hu, Haojie Zhu, Fahui Wang","doi":"10.1080/19475683.2023.2166584","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a new method for predictive crime hotspot analysis that further improves the kernel density estimation (KDE) method and the spatio-temporal kernel density estimation (STKDE) method by accounting for temporal crime cycles and is therefore termed the ‘cyclically adjusted STKDE (cSTKDE) method’. The case study on robbery incidents in Baton Rouge, Louisiana, shows a temporal cycle with a 6-month period of statistical significance from January 2010 to May 2018. This identified period is incorporated into the temporal kernel function of the new cSTKDE method. For validation, the Forecast Accuracy Index (FAI) and Forecast Precision Index (FPI) are used to evaluate the performance across 52 weeks in 2013. For 11 consecutive weeks since the beginning of 2013, the cSTKDE method outperforms the STKDE by 89% lower average abs(1-FAI) and 17% higher average FPI, and outperforms the KDE by 90% lower average abs(1-FAI) and 8% higher average FPI. Overall, the scenario with the best predictive accuracy by the cSTKDE is recommended over the traditional KDE or STKDE method as most feasible and effective in implementation of hotspot policing in practice.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"23 1","pages":"177 - 191"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysis\",\"authors\":\"Ya Han, Yujie Hu, Haojie Zhu, Fahui Wang\",\"doi\":\"10.1080/19475683.2023.2166584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper presents a new method for predictive crime hotspot analysis that further improves the kernel density estimation (KDE) method and the spatio-temporal kernel density estimation (STKDE) method by accounting for temporal crime cycles and is therefore termed the ‘cyclically adjusted STKDE (cSTKDE) method’. The case study on robbery incidents in Baton Rouge, Louisiana, shows a temporal cycle with a 6-month period of statistical significance from January 2010 to May 2018. This identified period is incorporated into the temporal kernel function of the new cSTKDE method. For validation, the Forecast Accuracy Index (FAI) and Forecast Precision Index (FPI) are used to evaluate the performance across 52 weeks in 2013. For 11 consecutive weeks since the beginning of 2013, the cSTKDE method outperforms the STKDE by 89% lower average abs(1-FAI) and 17% higher average FPI, and outperforms the KDE by 90% lower average abs(1-FAI) and 8% higher average FPI. Overall, the scenario with the best predictive accuracy by the cSTKDE is recommended over the traditional KDE or STKDE method as most feasible and effective in implementation of hotspot policing in practice.\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"23 1\",\"pages\":\"177 - 191\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2023.2166584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2166584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的预测犯罪热点分析方法,该方法是对核密度估计(KDE)方法和时空核密度估计(STKDE)方法的进一步改进,考虑了时间犯罪周期,因此被称为“周期调整的核密度估计(cSTKDE)方法”。以路易斯安那州巴吞鲁日市的抢劫事件为例,分析了2010年1月至2018年5月6个月的时间周期,具有统计学意义。这个确定的周期被合并到新的cSTKDE方法的时间核函数中。为了验证,我们使用预测准确度指数(FAI)和预测精度指数(FPI)来评估2013年52周的绩效。自2013年初以来连续11周,cSTKDE方法的平均资产(1-FAI)比STKDE低89%,平均FPI比STKDE高17%,平均资产(1-FAI)比KDE低90%,平均FPI高8%。综上所述,在实践中,cSTKDE预测精度最好的场景比传统的KDE或STKDE方法更可行、更有效地实现热点监管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysis
ABSTRACT This paper presents a new method for predictive crime hotspot analysis that further improves the kernel density estimation (KDE) method and the spatio-temporal kernel density estimation (STKDE) method by accounting for temporal crime cycles and is therefore termed the ‘cyclically adjusted STKDE (cSTKDE) method’. The case study on robbery incidents in Baton Rouge, Louisiana, shows a temporal cycle with a 6-month period of statistical significance from January 2010 to May 2018. This identified period is incorporated into the temporal kernel function of the new cSTKDE method. For validation, the Forecast Accuracy Index (FAI) and Forecast Precision Index (FPI) are used to evaluate the performance across 52 weeks in 2013. For 11 consecutive weeks since the beginning of 2013, the cSTKDE method outperforms the STKDE by 89% lower average abs(1-FAI) and 17% higher average FPI, and outperforms the KDE by 90% lower average abs(1-FAI) and 8% higher average FPI. Overall, the scenario with the best predictive accuracy by the cSTKDE is recommended over the traditional KDE or STKDE method as most feasible and effective in implementation of hotspot policing in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信