生存数据的描述扩展到竞争风险的情况:基于频率表的教学方法

Q3 Nursing
D. Bernasconi, L. Antolini
{"title":"生存数据的描述扩展到竞争风险的情况:基于频率表的教学方法","authors":"D. Bernasconi, L. Antolini","doi":"10.2427/8874","DOIUrl":null,"url":null,"abstract":"Survival analysis is a powerful statistical tool to study failure-time data. In introductory courses students learn how to describe right-censored survival time data using the product-limit estimator of the survival function on a given end-point relying on a product of conditional survival probabilities. In the case of a composite end-point, the next step is to account for the presence of competing risks. The complement to one of the survival function is decomposed into the sum of cause-specific incidences, which are obtained as sum of unconditional probabilities due to the single competing risk. However, this algebraic decomposition is not straightforward, given the difference between the structure of the involved estimators. In addition, one is tempted to use the Kaplan-Meier estimator, leading to an erroneous decomposition of the overall incidence. Here we discuss a simple reinterpretation of the Kaplan-Meier formula in terms of sum of non-conditional probabilities of developing the end-point in time, adjusted for the presence of censoring. This approach could be used for describing survival data through simple frequency tables which are directly generalized to the case of competing risks. In addition, it makes clear how the estimation of the single cause-specific incidence through the Kaplan-Meier estimator, simply considering the occurrence of competing events as censored data, leads to an overestimation of the cause-specific incidence. Two examples are provided to support the explanation: the first one, could help to clarify the procedure described by the formulas; the second one, simulates real data in order to present graphically the results.","PeriodicalId":45811,"journal":{"name":"Epidemiology Biostatistics and Public Health","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Description of survival data extended to the case of competing risks: a teaching approach based on frequency tables\",\"authors\":\"D. Bernasconi, L. Antolini\",\"doi\":\"10.2427/8874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survival analysis is a powerful statistical tool to study failure-time data. In introductory courses students learn how to describe right-censored survival time data using the product-limit estimator of the survival function on a given end-point relying on a product of conditional survival probabilities. In the case of a composite end-point, the next step is to account for the presence of competing risks. The complement to one of the survival function is decomposed into the sum of cause-specific incidences, which are obtained as sum of unconditional probabilities due to the single competing risk. However, this algebraic decomposition is not straightforward, given the difference between the structure of the involved estimators. In addition, one is tempted to use the Kaplan-Meier estimator, leading to an erroneous decomposition of the overall incidence. Here we discuss a simple reinterpretation of the Kaplan-Meier formula in terms of sum of non-conditional probabilities of developing the end-point in time, adjusted for the presence of censoring. This approach could be used for describing survival data through simple frequency tables which are directly generalized to the case of competing risks. In addition, it makes clear how the estimation of the single cause-specific incidence through the Kaplan-Meier estimator, simply considering the occurrence of competing events as censored data, leads to an overestimation of the cause-specific incidence. Two examples are provided to support the explanation: the first one, could help to clarify the procedure described by the formulas; the second one, simulates real data in order to present graphically the results.\",\"PeriodicalId\":45811,\"journal\":{\"name\":\"Epidemiology Biostatistics and Public Health\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology Biostatistics and Public Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2427/8874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology Biostatistics and Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2427/8874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 0

摘要

生存分析是研究故障时间数据的一种强大的统计工具。在入门课程中,学生学习如何使用依赖于条件生存概率的乘积的给定端点上的生存函数的积极限估计来描述右审查的生存时间数据。在复合终点的情况下,下一步是考虑竞争风险的存在。将其中一个生存函数的补函数分解为特定原因发生率的和,并将其作为单个竞争风险的无条件概率的和。然而,考虑到所涉及的估计器结构之间的差异,这种代数分解并不是直截了当的。此外,人们倾向于使用Kaplan-Meier估计器,导致对总体发生率的错误分解。在这里,我们讨论一个简单的重新解释卡普兰-迈埃尔公式的非条件概率的总和发展的时间点,调整了审查的存在。这种方法可以通过简单的频率表来描述生存数据,这些频率表可以直接推广到竞争风险的情况。此外,它清楚地表明,通过Kaplan-Meier估计器对单一原因特异性发生率的估计,简单地将竞争事件的发生视为审查数据,如何导致对原因特异性发生率的高估。提供了两个例子来支持这种解释:第一个例子可以帮助澄清公式所描述的过程;第二个是模拟真实数据,以便以图形方式显示结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Description of survival data extended to the case of competing risks: a teaching approach based on frequency tables
Survival analysis is a powerful statistical tool to study failure-time data. In introductory courses students learn how to describe right-censored survival time data using the product-limit estimator of the survival function on a given end-point relying on a product of conditional survival probabilities. In the case of a composite end-point, the next step is to account for the presence of competing risks. The complement to one of the survival function is decomposed into the sum of cause-specific incidences, which are obtained as sum of unconditional probabilities due to the single competing risk. However, this algebraic decomposition is not straightforward, given the difference between the structure of the involved estimators. In addition, one is tempted to use the Kaplan-Meier estimator, leading to an erroneous decomposition of the overall incidence. Here we discuss a simple reinterpretation of the Kaplan-Meier formula in terms of sum of non-conditional probabilities of developing the end-point in time, adjusted for the presence of censoring. This approach could be used for describing survival data through simple frequency tables which are directly generalized to the case of competing risks. In addition, it makes clear how the estimation of the single cause-specific incidence through the Kaplan-Meier estimator, simply considering the occurrence of competing events as censored data, leads to an overestimation of the cause-specific incidence. Two examples are provided to support the explanation: the first one, could help to clarify the procedure described by the formulas; the second one, simulates real data in order to present graphically the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology Biostatistics and Public Health
Epidemiology Biostatistics and Public Health PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
自引率
0.00%
发文量
0
期刊介绍: Epidemiology, Biostatistics, and Public Health (EBPH) is a multidisciplinary journal that has two broad aims: -To support the international public health community with publications on health service research, health care management, health policy, and health economics. -To strengthen the evidences on effective preventive interventions. -To advance public health methods, including biostatistics and epidemiology. EBPH welcomes submissions on all public health issues (including topics like eHealth, big data, personalized prevention, epidemiology and risk factors of chronic and infectious diseases); on basic and applied research in epidemiology; and in biostatistics methodology. Primary studies, systematic reviews, and meta-analyses are all welcome, as are research protocols for observational and experimental studies. EBPH aims to be a cross-discipline, international forum for scientific integration and evidence-based policymaking, combining the methodological aspects of epidemiology, biostatistics, and public health research with their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信