基于粒子群和灰狼优化的风力发电机无传感器MPPT控制器

Youssef Ait Ali, M. Ouassaid
{"title":"基于粒子群和灰狼优化的风力发电机无传感器MPPT控制器","authors":"Youssef Ait Ali, M. Ouassaid","doi":"10.1109/IRSEC48032.2019.9078151","DOIUrl":null,"url":null,"abstract":"This paper proposes a sensorless MPPT controller using Particle Swarm and Grey Wolf Optimization for wind turbines. MPPT controllers are used to track the maximum power point regardless of wind speed. Earlier proposed methods like P&O, Fuzzy Logic, Artificial Neural Networks suffers from steady state and lower efficiency. In addition to the power subjected to maximization, the proposed algorithms, Particle Swarm and Grey Wolf, do not need any additional wind sensor or prior knowledge of the wind energy system. Those proposed evolutionary computation techniques assure zero steady state oscillation and faster convergence while tracking maximum power. In this work, the MATLAB/Simulink environment is used to simulate the proposed PSO & GWO algorithms. The obtained results demonstrate that the adopted techniques are significantly more efficient than traditional algorithms.","PeriodicalId":6671,"journal":{"name":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"17 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sensorless MPPT Controller using Particle Swarm and Grey Wolf Optimization for Wind Turbines\",\"authors\":\"Youssef Ait Ali, M. Ouassaid\",\"doi\":\"10.1109/IRSEC48032.2019.9078151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a sensorless MPPT controller using Particle Swarm and Grey Wolf Optimization for wind turbines. MPPT controllers are used to track the maximum power point regardless of wind speed. Earlier proposed methods like P&O, Fuzzy Logic, Artificial Neural Networks suffers from steady state and lower efficiency. In addition to the power subjected to maximization, the proposed algorithms, Particle Swarm and Grey Wolf, do not need any additional wind sensor or prior knowledge of the wind energy system. Those proposed evolutionary computation techniques assure zero steady state oscillation and faster convergence while tracking maximum power. In this work, the MATLAB/Simulink environment is used to simulate the proposed PSO & GWO algorithms. The obtained results demonstrate that the adopted techniques are significantly more efficient than traditional algorithms.\",\"PeriodicalId\":6671,\"journal\":{\"name\":\"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"17 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC48032.2019.9078151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC48032.2019.9078151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于粒子群算法和灰狼算法的风力发电机组无传感器MPPT控制器。MPPT控制器用于跟踪最大功率点,无论风速。先前提出的P&O、模糊逻辑、人工神经网络等方法存在稳态和效率较低的问题。除了功率最大化,所提出的算法,粒子群和灰狼,不需要任何额外的风传感器或风能系统的先验知识。所提出的进化计算技术保证零稳态振荡和更快的收敛,同时跟踪最大功率。本文采用MATLAB/Simulink环境对所提出的PSO和GWO算法进行了仿真。实验结果表明,所采用的算法比传统算法效率高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorless MPPT Controller using Particle Swarm and Grey Wolf Optimization for Wind Turbines
This paper proposes a sensorless MPPT controller using Particle Swarm and Grey Wolf Optimization for wind turbines. MPPT controllers are used to track the maximum power point regardless of wind speed. Earlier proposed methods like P&O, Fuzzy Logic, Artificial Neural Networks suffers from steady state and lower efficiency. In addition to the power subjected to maximization, the proposed algorithms, Particle Swarm and Grey Wolf, do not need any additional wind sensor or prior knowledge of the wind energy system. Those proposed evolutionary computation techniques assure zero steady state oscillation and faster convergence while tracking maximum power. In this work, the MATLAB/Simulink environment is used to simulate the proposed PSO & GWO algorithms. The obtained results demonstrate that the adopted techniques are significantly more efficient than traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信