一个比较图像自动注释

Mahdia Bakalem, N. Benblidia, S. Ait-Aoudia
{"title":"一个比较图像自动注释","authors":"Mahdia Bakalem, N. Benblidia, S. Ait-Aoudia","doi":"10.1109/ISSPIT.2013.6781859","DOIUrl":null,"url":null,"abstract":"The image annotation is an effective technology for improving the Web image retrieval. Many works have been proposed to increase the image auto-annotation performance. The annotation quality depends on many factors: segmentation, choice of visual features...etc.. An image contains several visuals information (color, texture, shape....) but the best choice of these parameters is a difficult problem. The main focus of this paper is two-fold. First, we compare between image annotations in latent space and textual space. Second, we survey influence of visual features choice on image annotation. For that, we developed two image auto-annotation systems (AIA-LSA, AIA-WLSA). For each one, we propose three prototypes based on different visual descriptors; such as: texture, color and fusion of both parameters. Corel data set is used to experiment our prototypes, the results show that the annotation by latent space is more efficient than the annotation by textual space and the best choice of visual features is a persistent problem in general images.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"35 1","pages":"000086-000091"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparative image auto-annotation\",\"authors\":\"Mahdia Bakalem, N. Benblidia, S. Ait-Aoudia\",\"doi\":\"10.1109/ISSPIT.2013.6781859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image annotation is an effective technology for improving the Web image retrieval. Many works have been proposed to increase the image auto-annotation performance. The annotation quality depends on many factors: segmentation, choice of visual features...etc.. An image contains several visuals information (color, texture, shape....) but the best choice of these parameters is a difficult problem. The main focus of this paper is two-fold. First, we compare between image annotations in latent space and textual space. Second, we survey influence of visual features choice on image annotation. For that, we developed two image auto-annotation systems (AIA-LSA, AIA-WLSA). For each one, we propose three prototypes based on different visual descriptors; such as: texture, color and fusion of both parameters. Corel data set is used to experiment our prototypes, the results show that the annotation by latent space is more efficient than the annotation by textual space and the best choice of visual features is a persistent problem in general images.\",\"PeriodicalId\":88960,\"journal\":{\"name\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"35 1\",\"pages\":\"000086-000091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2013.6781859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像标注是提高Web图像检索效率的一种有效技术。为了提高图像自动标注的性能,人们提出了许多工作。注释的质量取决于很多因素:分割、视觉特征的选择等等。一张图像包含多种视觉信息(颜色、纹理、形状....),但这些参数的最佳选择是一个难题。本文的主要关注点有两个方面。首先,我们比较了潜在空间和文本空间的图像注释。其次,研究了视觉特征选择对图像标注的影响。为此,我们开发了两个图像自动标注系统(AIA-LSA、AIA-WLSA)。对于每一个,我们提出了三个基于不同视觉描述符的原型;如:纹理、颜色和融合这两个参数。利用Corel数据集对我们的原型进行了实验,结果表明基于潜在空间的标注比基于文本空间的标注更有效,并且视觉特征的最佳选择是一般图像中一直存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative image auto-annotation
The image annotation is an effective technology for improving the Web image retrieval. Many works have been proposed to increase the image auto-annotation performance. The annotation quality depends on many factors: segmentation, choice of visual features...etc.. An image contains several visuals information (color, texture, shape....) but the best choice of these parameters is a difficult problem. The main focus of this paper is two-fold. First, we compare between image annotations in latent space and textual space. Second, we survey influence of visual features choice on image annotation. For that, we developed two image auto-annotation systems (AIA-LSA, AIA-WLSA). For each one, we propose three prototypes based on different visual descriptors; such as: texture, color and fusion of both parameters. Corel data set is used to experiment our prototypes, the results show that the annotation by latent space is more efficient than the annotation by textual space and the best choice of visual features is a persistent problem in general images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信