陈述透明人脸识别的比较评分不确定性和验证决策置信度

Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper
{"title":"陈述透明人脸识别的比较评分不确定性和验证决策置信度","authors":"Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper","doi":"10.48550/arXiv.2210.10354","DOIUrl":null,"url":null,"abstract":"Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"148 1","pages":"506"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition\",\"authors\":\"Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper\",\"doi\":\"10.48550/arXiv.2210.10354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"148 1\",\"pages\":\"506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.10354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.10354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人脸识别(FR)越来越多地用于关键的验证决策,因此有必要评估这些决策的可信度。决策的可信度通常基于模型的整体性能或图像质量。我们建议将模型不确定性传播到分数和决策中,以增加验证决策的透明度。这项工作有两个贡献。首先,我们提出了一种估计人脸比较分数不确定性的方法。其次,我们引入系统决策的置信度度量,以提供对验证决策的洞察。在两个数据集上的三种人脸识别模型上,实验证明了比较分数不确定性和验证决策置信度的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition
Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信