{"title":"基于非易失性畴壁纳米线器件的超低功耗存储器大数据计算平台","authors":"Yuhao Wang, Hao Yu","doi":"10.5555/2648668.2648748","DOIUrl":null,"url":null,"abstract":"As one recently introduced non-volatile memory (NVM) device, domain-wall nanowire (or race-track) has shown potential for main memory storage but also computing capability. In this paper, the domain-wall nanowire is studied for a memory-based computing platform towards ultra-low-power big-data processing. One domain-wall nanowire based logic-in-memory architecture is proposed for big-data processing, where the domain-wall nanowire memory is deployed as main memory for data storage as well as XOR-logic for comparison and addition operations. The domain-wall nanowire based logic-in-memory circuits are evaluated by SPICE-level verifications. Further evaluated by applications of general-purpose SPEC2006 benchmark and also web-searching oriented Phoenix benchmark, the proposed computing platform can exhibit a significant power saving on both main memory and ALU under the similar performance when compared to CMOS based designs.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"46 1","pages":"329-334"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"An ultralow-power memory-based big-data computing platform by nonvolatile domain-wall nanowire devices\",\"authors\":\"Yuhao Wang, Hao Yu\",\"doi\":\"10.5555/2648668.2648748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one recently introduced non-volatile memory (NVM) device, domain-wall nanowire (or race-track) has shown potential for main memory storage but also computing capability. In this paper, the domain-wall nanowire is studied for a memory-based computing platform towards ultra-low-power big-data processing. One domain-wall nanowire based logic-in-memory architecture is proposed for big-data processing, where the domain-wall nanowire memory is deployed as main memory for data storage as well as XOR-logic for comparison and addition operations. The domain-wall nanowire based logic-in-memory circuits are evaluated by SPICE-level verifications. Further evaluated by applications of general-purpose SPEC2006 benchmark and also web-searching oriented Phoenix benchmark, the proposed computing platform can exhibit a significant power saving on both main memory and ALU under the similar performance when compared to CMOS based designs.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":\"46 1\",\"pages\":\"329-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2648668.2648748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2648668.2648748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ultralow-power memory-based big-data computing platform by nonvolatile domain-wall nanowire devices
As one recently introduced non-volatile memory (NVM) device, domain-wall nanowire (or race-track) has shown potential for main memory storage but also computing capability. In this paper, the domain-wall nanowire is studied for a memory-based computing platform towards ultra-low-power big-data processing. One domain-wall nanowire based logic-in-memory architecture is proposed for big-data processing, where the domain-wall nanowire memory is deployed as main memory for data storage as well as XOR-logic for comparison and addition operations. The domain-wall nanowire based logic-in-memory circuits are evaluated by SPICE-level verifications. Further evaluated by applications of general-purpose SPEC2006 benchmark and also web-searching oriented Phoenix benchmark, the proposed computing platform can exhibit a significant power saving on both main memory and ALU under the similar performance when compared to CMOS based designs.