{"title":"拓扑球面空间形式的自映射的一元群","authors":"D. Kishimoto, Nobuyuki Oda","doi":"10.4310/HHA.2021.V23.N2.A8","DOIUrl":null,"url":null,"abstract":"A topological spherical space form is the quotient of a sphere by a free action of a finite group. In general, their homotopy types depend on specific actions of a group. We show that the monoid of homotopy classes of self-maps of a topological spherical space form is determined by the acting group and the dimension of the sphere, not depending on a specific action.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monoids of self-maps of topological spherical space forms\",\"authors\":\"D. Kishimoto, Nobuyuki Oda\",\"doi\":\"10.4310/HHA.2021.V23.N2.A8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A topological spherical space form is the quotient of a sphere by a free action of a finite group. In general, their homotopy types depend on specific actions of a group. We show that the monoid of homotopy classes of self-maps of a topological spherical space form is determined by the acting group and the dimension of the sphere, not depending on a specific action.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2021.V23.N2.A8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2021.V23.N2.A8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monoids of self-maps of topological spherical space forms
A topological spherical space form is the quotient of a sphere by a free action of a finite group. In general, their homotopy types depend on specific actions of a group. We show that the monoid of homotopy classes of self-maps of a topological spherical space form is determined by the acting group and the dimension of the sphere, not depending on a specific action.