关于P.Q.-Baer偏广义幂级数模

IF 0.4 4区 数学 Q4 MATHEMATICS
A. Majidinya
{"title":"关于P.Q.-Baer偏广义幂级数模","authors":"A. Majidinya","doi":"10.1142/s100538672200030x","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"22 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the P.Q.-Baer Skew Generalized Power Series Modules\",\"authors\":\"A. Majidinya\",\"doi\":\"10.1142/s100538672200030x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s100538672200030x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s100538672200030x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个环[公式:见文]和一个严格全序单群[公式:见文],设[公式:见文]是一个单群同态,且[公式:见文]和[公式:见文]-弱刚性右[公式:见文]-模(即对于任何元素[公式:见文],[公式:见文]和[公式:见文],[公式:见文]),其中[公式:见文]是[公式:见文]的环自同态的环。证明了斜广义幂级数模[公式:见文]是一个主要的拟baer模当且仅当由[公式:见文]的一个[公式:见文]的索引子集[公式:见文]生成的每个子模的湮灭子是由[公式:见文]的一个幂等右理想生成的。因此,我们推导出,对于一个[公式:见文]-弱刚环[公式:见文],偏广义幂级数环[公式:见文]当且仅当[公式:见文]-主要是准贝尔,且[公式:见文]中任何[公式:见文]-索引的右半心幂等元子集在[公式:见文]中有一个广义[公式:见文]-索引连接。这些结果扩大了这一领域以前结果的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the P.Q.-Baer Skew Generalized Power Series Modules
For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信