UKF算法在被动定位与跟踪中的应用

Li Bingrong, Qu Chang-wen, Zhou Zheng, Guo Linpeng
{"title":"UKF算法在被动定位与跟踪中的应用","authors":"Li Bingrong, Qu Chang-wen, Zhou Zheng, Guo Linpeng","doi":"10.1109/IAEAC.2018.8577916","DOIUrl":null,"url":null,"abstract":"Depending on the information of DOA and TOA, passive location to a moving emitter can be realized by a fixed observer. In the location system, the state model is generally linear, but the measurement model is frequently nonlinear. With the help of extended Kalman filter (EKF), the state of the target can be estimated, and the track of it can be also traced. Unscented Kalman filter(UKF) is another method to solve the problem of nonlinear system. Deduction and simulation shows that, using EKF and UKF based on DOA and TOA information to locate and track the moving emitter, can be convergent with a high accuracy. Relatively, UKF is better than EKF.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"19 1","pages":"2530-2534"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of UKF Alogrithm in Passive Localization and Tracking\",\"authors\":\"Li Bingrong, Qu Chang-wen, Zhou Zheng, Guo Linpeng\",\"doi\":\"10.1109/IAEAC.2018.8577916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on the information of DOA and TOA, passive location to a moving emitter can be realized by a fixed observer. In the location system, the state model is generally linear, but the measurement model is frequently nonlinear. With the help of extended Kalman filter (EKF), the state of the target can be estimated, and the track of it can be also traced. Unscented Kalman filter(UKF) is another method to solve the problem of nonlinear system. Deduction and simulation shows that, using EKF and UKF based on DOA and TOA information to locate and track the moving emitter, can be convergent with a high accuracy. Relatively, UKF is better than EKF.\",\"PeriodicalId\":6573,\"journal\":{\"name\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"19 1\",\"pages\":\"2530-2534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2018.8577916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用到达点和到达点信息,利用固定观测器实现对运动辐射源的无源定位。在定位系统中,状态模型一般是线性的,而测量模型往往是非线性的。借助扩展卡尔曼滤波(EKF),可以估计目标的状态,并跟踪目标的运动轨迹。无气味卡尔曼滤波(UKF)是解决非线性系统问题的另一种方法。推导和仿真表明,利用基于DOA和TOA信息的EKF和UKF对运动辐射源进行定位和跟踪,具有收敛性和精度高的优点。相对而言,UKF优于EKF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of UKF Alogrithm in Passive Localization and Tracking
Depending on the information of DOA and TOA, passive location to a moving emitter can be realized by a fixed observer. In the location system, the state model is generally linear, but the measurement model is frequently nonlinear. With the help of extended Kalman filter (EKF), the state of the target can be estimated, and the track of it can be also traced. Unscented Kalman filter(UKF) is another method to solve the problem of nonlinear system. Deduction and simulation shows that, using EKF and UKF based on DOA and TOA information to locate and track the moving emitter, can be convergent with a high accuracy. Relatively, UKF is better than EKF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信