{"title":"合成助焊剂附件","authors":"G. Valent'i-Rojas, N. Westerberg, P. Öhberg","doi":"10.1103/PHYSREVRESEARCH.2.033453","DOIUrl":null,"url":null,"abstract":"Topological field theories emerge at low energy in strongly-correlated condensed matter systems and appear in the context of planar gravity. In particular, the study of Chern-Simons terms gives rise to the concept of flux attachment when the gauge field is coupled to matter, yielding flux-charge composites. Here we investigate the generation of flux attachment in a Bose-Einstein condensate in the presence of non-linear synthetic gauge potentials. In doing so, we identify the U(1) Chern-Simons gauge field as a singular density-dependent gauge potential, which in turn can be expressed as a Berry connection. We envisage a proof-of-concept scheme where the artificial gauge field is perturbatively induced by an effective light-matter detuning created by interparticle interactions. At a mean field level, we recover the action of a \"charged\" superfluid minimally coupled to both a background and a Chern-Simons gauge field. Remarkably, a localised density perturbation in combination with a non-linear gauge potential gives rise to an effective composite boson model of fractional quantum Hall effect, displaying anyonic vortices.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Synthetic flux attachment\",\"authors\":\"G. Valent'i-Rojas, N. Westerberg, P. Öhberg\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.033453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological field theories emerge at low energy in strongly-correlated condensed matter systems and appear in the context of planar gravity. In particular, the study of Chern-Simons terms gives rise to the concept of flux attachment when the gauge field is coupled to matter, yielding flux-charge composites. Here we investigate the generation of flux attachment in a Bose-Einstein condensate in the presence of non-linear synthetic gauge potentials. In doing so, we identify the U(1) Chern-Simons gauge field as a singular density-dependent gauge potential, which in turn can be expressed as a Berry connection. We envisage a proof-of-concept scheme where the artificial gauge field is perturbatively induced by an effective light-matter detuning created by interparticle interactions. At a mean field level, we recover the action of a \\\"charged\\\" superfluid minimally coupled to both a background and a Chern-Simons gauge field. Remarkably, a localised density perturbation in combination with a non-linear gauge potential gives rise to an effective composite boson model of fractional quantum Hall effect, displaying anyonic vortices.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.033453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.033453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological field theories emerge at low energy in strongly-correlated condensed matter systems and appear in the context of planar gravity. In particular, the study of Chern-Simons terms gives rise to the concept of flux attachment when the gauge field is coupled to matter, yielding flux-charge composites. Here we investigate the generation of flux attachment in a Bose-Einstein condensate in the presence of non-linear synthetic gauge potentials. In doing so, we identify the U(1) Chern-Simons gauge field as a singular density-dependent gauge potential, which in turn can be expressed as a Berry connection. We envisage a proof-of-concept scheme where the artificial gauge field is perturbatively induced by an effective light-matter detuning created by interparticle interactions. At a mean field level, we recover the action of a "charged" superfluid minimally coupled to both a background and a Chern-Simons gauge field. Remarkably, a localised density perturbation in combination with a non-linear gauge potential gives rise to an effective composite boson model of fractional quantum Hall effect, displaying anyonic vortices.