微粒检测的耦合分析方法:改进的可能性

A. Berezin
{"title":"微粒检测的耦合分析方法:改进的可能性","authors":"A. Berezin","doi":"10.4172/2155-952X.1000257","DOIUrl":null,"url":null,"abstract":"Microparticles (MPs) are considered important diagnostic biological markers in many diseases with promising predictive value. There are several methods that currently used for the detection of number and characterization of structure and features of MPs. Therefore, the MP detection methods have been remained pretty costly and time consuming. The review is depicted the perspectives to use coupling methods for MP measurement and structure assay. Indeed, there is large body evidence regarding that the combination of atomic force microscopy or coupling nanoparticle tracking analysis (NTA) with microbeads, plasmon resonance method and fluorescence quantum dots could exhibit much more accurate ability to detect both number and structure of MPs when compared with traditional flow cytometry and fluorescent microscopy. Whether several combined methods would be useful for advanced MP detection is not fully clear, while it is extremely promising.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"42 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling Analytical Methods for Detection of Microparticles: The Possibilities for Improvement\",\"authors\":\"A. Berezin\",\"doi\":\"10.4172/2155-952X.1000257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microparticles (MPs) are considered important diagnostic biological markers in many diseases with promising predictive value. There are several methods that currently used for the detection of number and characterization of structure and features of MPs. Therefore, the MP detection methods have been remained pretty costly and time consuming. The review is depicted the perspectives to use coupling methods for MP measurement and structure assay. Indeed, there is large body evidence regarding that the combination of atomic force microscopy or coupling nanoparticle tracking analysis (NTA) with microbeads, plasmon resonance method and fluorescence quantum dots could exhibit much more accurate ability to detect both number and structure of MPs when compared with traditional flow cytometry and fluorescent microscopy. Whether several combined methods would be useful for advanced MP detection is not fully clear, while it is extremely promising.\",\"PeriodicalId\":15156,\"journal\":{\"name\":\"Journal of biotechnology & biomaterials\",\"volume\":\"42 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology & biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-952X.1000257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology & biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-952X.1000257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微颗粒(MPs)被认为是许多疾病的重要诊断生物学标志物,具有良好的预测价值。目前有几种方法用于检测MPs的数量和表征结构和特征。因此,MP检测方法仍然是非常昂贵和耗时的。综述了应用偶联方法进行MP测定和结构分析的前景。事实上,有大量证据表明,与传统的流式细胞术和荧光显微镜相比,原子力显微镜或耦合纳米颗粒跟踪分析(NTA)与微珠、等离子体共振法和荧光量子点相结合,可以更准确地检测MPs的数量和结构。几种联合方法是否对高级MP检测有用尚不完全清楚,但非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Analytical Methods for Detection of Microparticles: The Possibilities for Improvement
Microparticles (MPs) are considered important diagnostic biological markers in many diseases with promising predictive value. There are several methods that currently used for the detection of number and characterization of structure and features of MPs. Therefore, the MP detection methods have been remained pretty costly and time consuming. The review is depicted the perspectives to use coupling methods for MP measurement and structure assay. Indeed, there is large body evidence regarding that the combination of atomic force microscopy or coupling nanoparticle tracking analysis (NTA) with microbeads, plasmon resonance method and fluorescence quantum dots could exhibit much more accurate ability to detect both number and structure of MPs when compared with traditional flow cytometry and fluorescent microscopy. Whether several combined methods would be useful for advanced MP detection is not fully clear, while it is extremely promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信