新冠肺炎封城对海岸带特大城市周边沿海海域卫星观测气溶胶光学厚度的影响

Q3 Social Sciences
Kaidi Wang, Xuepeng Zhao
{"title":"新冠肺炎封城对海岸带特大城市周边沿海海域卫星观测气溶胶光学厚度的影响","authors":"Kaidi Wang, Xuepeng Zhao","doi":"10.3390/geographies1030021","DOIUrl":null,"url":null,"abstract":"Nearly 40 years of aerosol optical thickness (AOT) climate data record (CDR) derived from NOAA operational satellite Advanced Very High Resolution Radiometer (AVHRR) observation over the global oceans is used to study the AOT changes due to the COVID-19 lockdown over the surrounding coastal oceanic areas of 18 megacities in the coast zone (MCCZ). The AOT difference between the annual mean AOT values of 2020 with COVID-19 lockdown and 2019 without the lockdown along with the 2020 AOT annual anomaly are used to effectively identify the AOT changes that are a result of the lockdown. We found that for most of the 18 MCCZ, the COVID-19 lockdowns implemented to contain the spread of the coronavirus resulted in a decrease between 1% and 30% in AOT due to reduced anthropogenic emissions associated with the lockdowns. However, the AOT long-term trend and other aerosol interannual variations due to favorable or unfavorable meteorological conditions may mask AOT changes due to the lockdown effect in some MCCZ. Different seasonal variations of aerosol amount in 2020 relative to 2019 due to other natural aerosol emission sources not influenced by the lockdown, such as dust storms and natural biomass burning and smoke, may also conceal a limited reduction in the annual mean AOT due to the lockdown in MCCZ with relatively loose lockdown. This study indicates that the use of long-term satellite observation is helpful for studying and monitoring the aerosol changes due to the emission reduction associated with the COVID-19 lockdown in the surrounding coastal oceanic areas of MCCZ, which will benefit the future development of the mitigation strategy for air pollution and emissions in megacities.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Impact of COVID-19 Lockdowns on Satellite-Observed Aerosol Optical Thickness over the Surrounding Coastal Oceanic Areas of Megacities in the Coastal Zone\",\"authors\":\"Kaidi Wang, Xuepeng Zhao\",\"doi\":\"10.3390/geographies1030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nearly 40 years of aerosol optical thickness (AOT) climate data record (CDR) derived from NOAA operational satellite Advanced Very High Resolution Radiometer (AVHRR) observation over the global oceans is used to study the AOT changes due to the COVID-19 lockdown over the surrounding coastal oceanic areas of 18 megacities in the coast zone (MCCZ). The AOT difference between the annual mean AOT values of 2020 with COVID-19 lockdown and 2019 without the lockdown along with the 2020 AOT annual anomaly are used to effectively identify the AOT changes that are a result of the lockdown. We found that for most of the 18 MCCZ, the COVID-19 lockdowns implemented to contain the spread of the coronavirus resulted in a decrease between 1% and 30% in AOT due to reduced anthropogenic emissions associated with the lockdowns. However, the AOT long-term trend and other aerosol interannual variations due to favorable or unfavorable meteorological conditions may mask AOT changes due to the lockdown effect in some MCCZ. Different seasonal variations of aerosol amount in 2020 relative to 2019 due to other natural aerosol emission sources not influenced by the lockdown, such as dust storms and natural biomass burning and smoke, may also conceal a limited reduction in the annual mean AOT due to the lockdown in MCCZ with relatively loose lockdown. This study indicates that the use of long-term satellite observation is helpful for studying and monitoring the aerosol changes due to the emission reduction associated with the COVID-19 lockdown in the surrounding coastal oceanic areas of MCCZ, which will benefit the future development of the mitigation strategy for air pollution and emissions in megacities.\",\"PeriodicalId\":38507,\"journal\":{\"name\":\"Human Geographies\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies1030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies1030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

利用美国国家海洋和大气管理局(NOAA)业务卫星先进甚高分辨率辐射计(AVHRR)近40年全球海洋气溶胶光学厚度(AOT)气候数据记录(CDR),研究了新冠肺炎疫情对海岸带(MCCZ) 18个特大城市周边沿海海域AOT的影响。利用2020年新冠肺炎封锁期间AOT年平均值与2019年非封锁期间AOT年平均值的差异,以及2020年AOT年异常值,有效识别封锁导致的AOT变化。我们发现,对于18个mcz中的大多数,由于与封锁相关的人为排放减少,为遏制冠状病毒的传播而实施的COVID-19封锁导致AOT下降了1%至30%。然而,由于有利或不利的气象条件,AOT的长期趋势和其他气溶胶年际变化可能掩盖了部分mcz封城效应造成的AOT变化。由于不受封城影响的其他天然气溶胶排放源(如沙尘暴和天然生物质燃烧和烟雾),2020年气溶胶量相对于2019年的不同季节变化也可能掩盖了封城相对宽松的MCCZ年平均AOT的有限减少。本研究表明,利用卫星长期观测有助于研究和监测mcz周边沿海海域新冠肺炎封城相关减排带来的气溶胶变化,有利于未来特大城市大气污染排放减缓战略的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of COVID-19 Lockdowns on Satellite-Observed Aerosol Optical Thickness over the Surrounding Coastal Oceanic Areas of Megacities in the Coastal Zone
Nearly 40 years of aerosol optical thickness (AOT) climate data record (CDR) derived from NOAA operational satellite Advanced Very High Resolution Radiometer (AVHRR) observation over the global oceans is used to study the AOT changes due to the COVID-19 lockdown over the surrounding coastal oceanic areas of 18 megacities in the coast zone (MCCZ). The AOT difference between the annual mean AOT values of 2020 with COVID-19 lockdown and 2019 without the lockdown along with the 2020 AOT annual anomaly are used to effectively identify the AOT changes that are a result of the lockdown. We found that for most of the 18 MCCZ, the COVID-19 lockdowns implemented to contain the spread of the coronavirus resulted in a decrease between 1% and 30% in AOT due to reduced anthropogenic emissions associated with the lockdowns. However, the AOT long-term trend and other aerosol interannual variations due to favorable or unfavorable meteorological conditions may mask AOT changes due to the lockdown effect in some MCCZ. Different seasonal variations of aerosol amount in 2020 relative to 2019 due to other natural aerosol emission sources not influenced by the lockdown, such as dust storms and natural biomass burning and smoke, may also conceal a limited reduction in the annual mean AOT due to the lockdown in MCCZ with relatively loose lockdown. This study indicates that the use of long-term satellite observation is helpful for studying and monitoring the aerosol changes due to the emission reduction associated with the COVID-19 lockdown in the surrounding coastal oceanic areas of MCCZ, which will benefit the future development of the mitigation strategy for air pollution and emissions in megacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信