{"title":"中国一元代数的Hochschild上同调","authors":"H. AlHussein","doi":"10.1142/s1005386722000438","DOIUrl":null,"url":null,"abstract":"In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"28 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Hochschild Cohomology of the Chinese Monoid Algebra\",\"authors\":\"H. AlHussein\",\"doi\":\"10.1142/s1005386722000438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000438\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000438","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Hochschild Cohomology of the Chinese Monoid Algebra
In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.