中国一元代数的Hochschild上同调

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000438
H. AlHussein
{"title":"中国一元代数的Hochschild上同调","authors":"H. AlHussein","doi":"10.1142/s1005386722000438","DOIUrl":null,"url":null,"abstract":"In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Hochschild Cohomology of the Chinese Monoid Algebra\",\"authors\":\"H. AlHussein\",\"doi\":\"10.1142/s1005386722000438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们找到了中国一元代数的Hochschild上同调群,并推导出了它的Hilbert和poincarcarr级数。为了得到这一结果,我们利用代数离散Morse理论和Gröbner-Shirshov基础构造了中国单群的Anick分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Hochschild Cohomology of the Chinese Monoid Algebra
In this work we find the groups of Hochschild cohomologies for the Chinese monoid algebra and derive its Hilbert and Poincaré series. In order to obtain this result we construct the Anick resolution via the algebraic discrete Morse theory and Gröbner–Shirshov basis for the Chinese monoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信