尼日利亚Kaiama地区含钽矿脉的二维电阻率成像

W. Raji, R. B. Bale
{"title":"尼日利亚Kaiama地区含钽矿脉的二维电阻率成像","authors":"W. Raji, R. B. Bale","doi":"10.1080/20909977.2022.2106666","DOIUrl":null,"url":null,"abstract":"ABSTRACT The utility of the electrical resistivity (ER) method of geophysics for delineating tantalite-rich zones is demonstrated. To avoid negative environmental consequences, the local authority refused the use of trial-and-error method by the artisanal and small-scale miners. 2D ER method was applied to delineate the locations and dimensions of the tantalite-rich zones. Data were acquired along nine profiles in the study area at predetermined locations, after reconnaissance field mapping, using SuperSting R8/IP Earth Resistivity Metre, 84 electrodes, and the full accessories. Each profile was 249 m long with 84 electrodes coupled to the ground at 3 m intervals on a straight line following the dipole–dipole electrode array. Data acquired were processed to obtain tomographic images of the subsurface. The results revealed low resistivity anomalies (1–60 Ωm) corresponding to tantalite-rich quartz veins that intruded into the high-resistive migmatite-gneisses-schist complex. The tantalite-rich zones were located at depths ranging from near-surface to about 45 m, their lengths and thicknesses range from 40 to 220 m and 3 to 32 m, respectively. A pit dug along profile six confirmed the low resistivity structures to be tantalite-rich quartz veins. Findings from the study are useful for economic evaluation of similar deposits, determining the extent of excavation required for mining, and planning land reclamation.","PeriodicalId":100964,"journal":{"name":"NRIAG Journal of Astronomy and Geophysics","volume":"62 1","pages":"306 - 312"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D electrical resistivity imaging of tantalite-bearing veins in Kaiama, Nigeria\",\"authors\":\"W. Raji, R. B. Bale\",\"doi\":\"10.1080/20909977.2022.2106666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The utility of the electrical resistivity (ER) method of geophysics for delineating tantalite-rich zones is demonstrated. To avoid negative environmental consequences, the local authority refused the use of trial-and-error method by the artisanal and small-scale miners. 2D ER method was applied to delineate the locations and dimensions of the tantalite-rich zones. Data were acquired along nine profiles in the study area at predetermined locations, after reconnaissance field mapping, using SuperSting R8/IP Earth Resistivity Metre, 84 electrodes, and the full accessories. Each profile was 249 m long with 84 electrodes coupled to the ground at 3 m intervals on a straight line following the dipole–dipole electrode array. Data acquired were processed to obtain tomographic images of the subsurface. The results revealed low resistivity anomalies (1–60 Ωm) corresponding to tantalite-rich quartz veins that intruded into the high-resistive migmatite-gneisses-schist complex. The tantalite-rich zones were located at depths ranging from near-surface to about 45 m, their lengths and thicknesses range from 40 to 220 m and 3 to 32 m, respectively. A pit dug along profile six confirmed the low resistivity structures to be tantalite-rich quartz veins. Findings from the study are useful for economic evaluation of similar deposits, determining the extent of excavation required for mining, and planning land reclamation.\",\"PeriodicalId\":100964,\"journal\":{\"name\":\"NRIAG Journal of Astronomy and Geophysics\",\"volume\":\"62 1\",\"pages\":\"306 - 312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NRIAG Journal of Astronomy and Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20909977.2022.2106666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NRIAG Journal of Astronomy and Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20909977.2022.2106666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文论证了地球物理电阻率法在划定富钽矿带中的应用。为了避免对环境造成负面影响,地方当局拒绝手工和小规模采矿者使用试错法。利用二维ER法圈定了富钽带的位置和尺寸。利用SuperSting R8/IP地电阻率仪、84个电极和全部附件,在研究区预定位置沿9条剖面获取数据。每条剖面长249米,84个电极沿着偶极-偶极电极阵列以3米的间隔在一条直线上连接到地面。对获取的数据进行处理,获得地下层析成像。结果显示低电阻率异常(1-60 Ωm)对应于侵入高电阻率混杂岩片麻岩片岩杂岩的富钽石英脉。富钽矿带分布在近地表至45 m左右的深度,其长度和厚度分别为40 ~ 220 m和3 ~ 32 m。沿6号剖面开挖的一个坑证实了该低电阻率构造为富钽石英脉。研究结果对类似矿床的经济评价、确定采矿所需的挖掘范围和规划土地复垦都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D electrical resistivity imaging of tantalite-bearing veins in Kaiama, Nigeria
ABSTRACT The utility of the electrical resistivity (ER) method of geophysics for delineating tantalite-rich zones is demonstrated. To avoid negative environmental consequences, the local authority refused the use of trial-and-error method by the artisanal and small-scale miners. 2D ER method was applied to delineate the locations and dimensions of the tantalite-rich zones. Data were acquired along nine profiles in the study area at predetermined locations, after reconnaissance field mapping, using SuperSting R8/IP Earth Resistivity Metre, 84 electrodes, and the full accessories. Each profile was 249 m long with 84 electrodes coupled to the ground at 3 m intervals on a straight line following the dipole–dipole electrode array. Data acquired were processed to obtain tomographic images of the subsurface. The results revealed low resistivity anomalies (1–60 Ωm) corresponding to tantalite-rich quartz veins that intruded into the high-resistive migmatite-gneisses-schist complex. The tantalite-rich zones were located at depths ranging from near-surface to about 45 m, their lengths and thicknesses range from 40 to 220 m and 3 to 32 m, respectively. A pit dug along profile six confirmed the low resistivity structures to be tantalite-rich quartz veins. Findings from the study are useful for economic evaluation of similar deposits, determining the extent of excavation required for mining, and planning land reclamation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信