Archishman Saha, M. Mishra, R. Saha, A. Dalal, Ankita Sengupta, A. Mondal, S. Chattopadhyay, S. Chakrabarti
{"title":"通过研究P:ZnO/Ga2O3异质结的光响应特性,验证P型磷(P)掺杂ZnO薄膜形成的稳定性","authors":"Archishman Saha, M. Mishra, R. Saha, A. Dalal, Ankita Sengupta, A. Mondal, S. Chattopadhyay, S. Chakrabarti","doi":"10.1117/12.2677483","DOIUrl":null,"url":null,"abstract":"The formation of reproducible p-type conductivity in ZnO thin films is highly challenging now a days for the fabrication of several homo/heterojunction based fully transparent opto-electronic devices. In this study, p-type P: ZnO thin films are deposited by cost-effective SOD process and then intrinsically n-type Ga2O3 films are deposited on it to validate the p-type conductivity of ZnO by making vertical heterojunction with n-Ga2O3. The ZnO thin films are deposited by RF sputtering and subsequent P-doping is done by using the SOD technique on it. This involves proximity diffusing dopants into a spin-coated film by stacking the dopant source during thermal annealing at 800◦C for four hours in the furnace. Ga2O3 films are deposited on the P: ZnO films by using RF sputtering technique, for making the heterojunction. The electrical measurements are performed by using current-voltage (I-V) measurements under illuminated and dark conditions. The photo-switching and responsivity are also measured on the fabricated device. It is observed that the P: ZnO/Ga2O3 heterojunction exhibits the photoresponse in the dual wavelength region. The corresponding two peaks of responsivity are found around 200 nm and 390 nm with the values of 68.03 A/W and 7.93 A/W (at 5 V), respectively. Such two peaks originated due to the ultra-wide bandgaps of Ga2O3 (4.7eV) and P: ZnO (3.1 eV). Also, such heterojunction shows a rapid switching speed under white light at 5 V (rise time: 230 ms, fall time: 163 ms) and −5 V (rise time: 83 ms, Fall time: 169 ms), which is comparable with the other reported results. Therefore, the current study demonstrates the development of highly stable and reproducible p-type P: ZnO thin films by employing SOD technique and the validation of p-type formation by fabricating P: ZnO/Ga2O3 heterojunctions for dual-wavelength selector UV detector application and such detectors can be a potential candidate for various optoelectronic devices.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"47 1","pages":"1265109 - 1265109-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of stable p-type phosphorus (P) doped ZnO thin films formation by investigating the photoresponse properties of P:ZnO/Ga2O3 heterojunctions\",\"authors\":\"Archishman Saha, M. Mishra, R. Saha, A. Dalal, Ankita Sengupta, A. Mondal, S. Chattopadhyay, S. Chakrabarti\",\"doi\":\"10.1117/12.2677483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of reproducible p-type conductivity in ZnO thin films is highly challenging now a days for the fabrication of several homo/heterojunction based fully transparent opto-electronic devices. In this study, p-type P: ZnO thin films are deposited by cost-effective SOD process and then intrinsically n-type Ga2O3 films are deposited on it to validate the p-type conductivity of ZnO by making vertical heterojunction with n-Ga2O3. The ZnO thin films are deposited by RF sputtering and subsequent P-doping is done by using the SOD technique on it. This involves proximity diffusing dopants into a spin-coated film by stacking the dopant source during thermal annealing at 800◦C for four hours in the furnace. Ga2O3 films are deposited on the P: ZnO films by using RF sputtering technique, for making the heterojunction. The electrical measurements are performed by using current-voltage (I-V) measurements under illuminated and dark conditions. The photo-switching and responsivity are also measured on the fabricated device. It is observed that the P: ZnO/Ga2O3 heterojunction exhibits the photoresponse in the dual wavelength region. The corresponding two peaks of responsivity are found around 200 nm and 390 nm with the values of 68.03 A/W and 7.93 A/W (at 5 V), respectively. Such two peaks originated due to the ultra-wide bandgaps of Ga2O3 (4.7eV) and P: ZnO (3.1 eV). Also, such heterojunction shows a rapid switching speed under white light at 5 V (rise time: 230 ms, fall time: 163 ms) and −5 V (rise time: 83 ms, Fall time: 169 ms), which is comparable with the other reported results. Therefore, the current study demonstrates the development of highly stable and reproducible p-type P: ZnO thin films by employing SOD technique and the validation of p-type formation by fabricating P: ZnO/Ga2O3 heterojunctions for dual-wavelength selector UV detector application and such detectors can be a potential candidate for various optoelectronic devices.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"47 1\",\"pages\":\"1265109 - 1265109-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of stable p-type phosphorus (P) doped ZnO thin films formation by investigating the photoresponse properties of P:ZnO/Ga2O3 heterojunctions
The formation of reproducible p-type conductivity in ZnO thin films is highly challenging now a days for the fabrication of several homo/heterojunction based fully transparent opto-electronic devices. In this study, p-type P: ZnO thin films are deposited by cost-effective SOD process and then intrinsically n-type Ga2O3 films are deposited on it to validate the p-type conductivity of ZnO by making vertical heterojunction with n-Ga2O3. The ZnO thin films are deposited by RF sputtering and subsequent P-doping is done by using the SOD technique on it. This involves proximity diffusing dopants into a spin-coated film by stacking the dopant source during thermal annealing at 800◦C for four hours in the furnace. Ga2O3 films are deposited on the P: ZnO films by using RF sputtering technique, for making the heterojunction. The electrical measurements are performed by using current-voltage (I-V) measurements under illuminated and dark conditions. The photo-switching and responsivity are also measured on the fabricated device. It is observed that the P: ZnO/Ga2O3 heterojunction exhibits the photoresponse in the dual wavelength region. The corresponding two peaks of responsivity are found around 200 nm and 390 nm with the values of 68.03 A/W and 7.93 A/W (at 5 V), respectively. Such two peaks originated due to the ultra-wide bandgaps of Ga2O3 (4.7eV) and P: ZnO (3.1 eV). Also, such heterojunction shows a rapid switching speed under white light at 5 V (rise time: 230 ms, fall time: 163 ms) and −5 V (rise time: 83 ms, Fall time: 169 ms), which is comparable with the other reported results. Therefore, the current study demonstrates the development of highly stable and reproducible p-type P: ZnO thin films by employing SOD technique and the validation of p-type formation by fabricating P: ZnO/Ga2O3 heterojunctions for dual-wavelength selector UV detector application and such detectors can be a potential candidate for various optoelectronic devices.