从用户与多个设备的交互中训练特定于人的注视估计器

Xucong Zhang, Michael Xuelin Huang, Yusuke Sugano, A. Bulling
{"title":"从用户与多个设备的交互中训练特定于人的注视估计器","authors":"Xucong Zhang, Michael Xuelin Huang, Yusuke Sugano, A. Bulling","doi":"10.1145/3173574.3174198","DOIUrl":null,"url":null,"abstract":"Learning-based gaze estimation has significant potential to enable attentive user interfaces and gaze-based interaction on the billions of camera-equipped handheld devices and ambient displays. While training accurate person- and device-independent gaze estimators remains challenging, person-specific training is feasible but requires tedious data collection for each target device. To address these limitations, we present the first method to train person-specific gaze estimators across multiple devices. At the core of our method is a single convolutional neural network with shared feature extraction layers and device-specific branches that we train from face images and corresponding on-screen gaze locations. Detailed evaluations on a new dataset of interactions with five common devices (mobile phone, tablet, laptop, desktop computer, smart TV) and three common applications (mobile game, text editing, media center) demonstrate the significant potential of cross-device training. We further explore training with gaze locations derived from natural interactions, such as mouse or touch input.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Training Person-Specific Gaze Estimators from User Interactions with Multiple Devices\",\"authors\":\"Xucong Zhang, Michael Xuelin Huang, Yusuke Sugano, A. Bulling\",\"doi\":\"10.1145/3173574.3174198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based gaze estimation has significant potential to enable attentive user interfaces and gaze-based interaction on the billions of camera-equipped handheld devices and ambient displays. While training accurate person- and device-independent gaze estimators remains challenging, person-specific training is feasible but requires tedious data collection for each target device. To address these limitations, we present the first method to train person-specific gaze estimators across multiple devices. At the core of our method is a single convolutional neural network with shared feature extraction layers and device-specific branches that we train from face images and corresponding on-screen gaze locations. Detailed evaluations on a new dataset of interactions with five common devices (mobile phone, tablet, laptop, desktop computer, smart TV) and three common applications (mobile game, text editing, media center) demonstrate the significant potential of cross-device training. We further explore training with gaze locations derived from natural interactions, such as mouse or touch input.\",\"PeriodicalId\":20512,\"journal\":{\"name\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173574.3174198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3174198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

基于学习的凝视估计具有巨大的潜力,可以在数十亿配备摄像头的手持设备和环境显示器上实现专注的用户界面和基于凝视的交互。虽然训练准确的独立于人和设备的注视估计器仍然具有挑战性,但针对个人的训练是可行的,但需要为每个目标设备收集繁琐的数据。为了解决这些限制,我们提出了第一种跨多个设备训练特定于人的注视估计器的方法。我们方法的核心是一个单一的卷积神经网络,它具有共享的特征提取层和特定于设备的分支,我们从人脸图像和相应的屏幕注视位置中训练这些分支。对五种常见设备(手机、平板电脑、笔记本电脑、台式电脑、智能电视)和三种常见应用程序(手机游戏、文本编辑、媒体中心)交互的新数据集的详细评估显示了跨设备培训的巨大潜力。我们进一步探索了来自自然交互(如鼠标或触摸输入)的凝视位置的训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Person-Specific Gaze Estimators from User Interactions with Multiple Devices
Learning-based gaze estimation has significant potential to enable attentive user interfaces and gaze-based interaction on the billions of camera-equipped handheld devices and ambient displays. While training accurate person- and device-independent gaze estimators remains challenging, person-specific training is feasible but requires tedious data collection for each target device. To address these limitations, we present the first method to train person-specific gaze estimators across multiple devices. At the core of our method is a single convolutional neural network with shared feature extraction layers and device-specific branches that we train from face images and corresponding on-screen gaze locations. Detailed evaluations on a new dataset of interactions with five common devices (mobile phone, tablet, laptop, desktop computer, smart TV) and three common applications (mobile game, text editing, media center) demonstrate the significant potential of cross-device training. We further explore training with gaze locations derived from natural interactions, such as mouse or touch input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信