I. Prundeanu, C. Chelariu, David Rafael Contreras Perez
{"title":"黑海西部leb<e:1>油田上白垩统储层及周围地层元素地球化学在水平井地质导向中的应用","authors":"I. Prundeanu, C. Chelariu, David Rafael Contreras Perez","doi":"10.2516/ogst/2020083","DOIUrl":null,"url":null,"abstract":"The precise landing and steering of horizontal wells using conventional mudlogging and Logging While Drilling (LWD) data is a particular challenge for the Lebăda Field, offshore Romania. The use of a new technique of elemental geochemistry analysis (or chemosteering) became an option for the identification of Cenomanian, Turonian–Coniacian–Santonian, Campanian and Eocene strata. This has enabled more accurate placement of the horizontal development wells within the desired reservoir target interval. Geochemical data enabled the identification of chemostratigraphic zones C1, C2, C3 and zone R that correspond to the reservoir section. The application is a result of the geochemical zonation performed using elements and ratios that are sensitive to depositional environment, sea level change, heavy mineral concentrations and siliciclastic input namely: Sr/Ca, Zr/Th, Si/Zr and Si/K. In ascending stratigraphic order, the ratio thresholds of zone C3 are Zr/Th > 11, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19, while zone R corresponds to 5.5 < Zr/Th < 11, Sr/Ca < 1.1, Si/Zr > 22 and Si/K > 19. C2 zone is defined by Zr/Th < 5.5, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19 and C1 zone is characterized by Si/Zr > 22 and Si/K > 19. The selected geochemical ratios indicate a strong geochemical zonation. In the case of offset wells, 85.9% of the data confirmed the proposed classification and 89.4% for the real-time application case. The zone R shows a strong contrast with the surrounding formations facilitating critical decisions during well placement and geosteering, increasing the reservoir exposure by 28%. The quantitative approach delivered very valuable results, providing a solid foundation to define correlation and well landing intervals. Simultaneously, the cost of the method represents a fraction of the LWD cost and 0.15% of the total project cost, making it very cost effective and a standard approach for future projects.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elemental geochemistry of the Upper Cretaceous reservoir and surrounding formations applied in geosteering of horizontal wells, Lebăda Field – Western Black Sea\",\"authors\":\"I. Prundeanu, C. Chelariu, David Rafael Contreras Perez\",\"doi\":\"10.2516/ogst/2020083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise landing and steering of horizontal wells using conventional mudlogging and Logging While Drilling (LWD) data is a particular challenge for the Lebăda Field, offshore Romania. The use of a new technique of elemental geochemistry analysis (or chemosteering) became an option for the identification of Cenomanian, Turonian–Coniacian–Santonian, Campanian and Eocene strata. This has enabled more accurate placement of the horizontal development wells within the desired reservoir target interval. Geochemical data enabled the identification of chemostratigraphic zones C1, C2, C3 and zone R that correspond to the reservoir section. The application is a result of the geochemical zonation performed using elements and ratios that are sensitive to depositional environment, sea level change, heavy mineral concentrations and siliciclastic input namely: Sr/Ca, Zr/Th, Si/Zr and Si/K. In ascending stratigraphic order, the ratio thresholds of zone C3 are Zr/Th > 11, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19, while zone R corresponds to 5.5 < Zr/Th < 11, Sr/Ca < 1.1, Si/Zr > 22 and Si/K > 19. C2 zone is defined by Zr/Th < 5.5, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19 and C1 zone is characterized by Si/Zr > 22 and Si/K > 19. The selected geochemical ratios indicate a strong geochemical zonation. In the case of offset wells, 85.9% of the data confirmed the proposed classification and 89.4% for the real-time application case. The zone R shows a strong contrast with the surrounding formations facilitating critical decisions during well placement and geosteering, increasing the reservoir exposure by 28%. The quantitative approach delivered very valuable results, providing a solid foundation to define correlation and well landing intervals. Simultaneously, the cost of the method represents a fraction of the LWD cost and 0.15% of the total project cost, making it very cost effective and a standard approach for future projects.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2020083\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020083","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Elemental geochemistry of the Upper Cretaceous reservoir and surrounding formations applied in geosteering of horizontal wells, Lebăda Field – Western Black Sea
The precise landing and steering of horizontal wells using conventional mudlogging and Logging While Drilling (LWD) data is a particular challenge for the Lebăda Field, offshore Romania. The use of a new technique of elemental geochemistry analysis (or chemosteering) became an option for the identification of Cenomanian, Turonian–Coniacian–Santonian, Campanian and Eocene strata. This has enabled more accurate placement of the horizontal development wells within the desired reservoir target interval. Geochemical data enabled the identification of chemostratigraphic zones C1, C2, C3 and zone R that correspond to the reservoir section. The application is a result of the geochemical zonation performed using elements and ratios that are sensitive to depositional environment, sea level change, heavy mineral concentrations and siliciclastic input namely: Sr/Ca, Zr/Th, Si/Zr and Si/K. In ascending stratigraphic order, the ratio thresholds of zone C3 are Zr/Th > 11, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19, while zone R corresponds to 5.5 < Zr/Th < 11, Sr/Ca < 1.1, Si/Zr > 22 and Si/K > 19. C2 zone is defined by Zr/Th < 5.5, Sr/Ca > 1.1, Si/Zr < 22 and Si/K < 19 and C1 zone is characterized by Si/Zr > 22 and Si/K > 19. The selected geochemical ratios indicate a strong geochemical zonation. In the case of offset wells, 85.9% of the data confirmed the proposed classification and 89.4% for the real-time application case. The zone R shows a strong contrast with the surrounding formations facilitating critical decisions during well placement and geosteering, increasing the reservoir exposure by 28%. The quantitative approach delivered very valuable results, providing a solid foundation to define correlation and well landing intervals. Simultaneously, the cost of the method represents a fraction of the LWD cost and 0.15% of the total project cost, making it very cost effective and a standard approach for future projects.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.