关于词典学Gröbner基的w特征集

Chenqi Mou, Dongming Wang
{"title":"关于词典学Gröbner基的w特征集","authors":"Chenqi Mou, Dongming Wang","doi":"10.1145/3338637.3338647","DOIUrl":null,"url":null,"abstract":"The structures of lexicographic (LEX) Gröbner bases were studied first by Lazard [4] for bivariate ideals and then extended to general zero-dimensional multivariate (radical) ideals [3, 6, 2]. Based on the structures of LEX Gröbner bases, algorithms have been proposed to compute triangular decompositions out of LEX Gröbner bases for zero-dimensional ideals [5, 2]. The relationships between LEX Gröbner bases and Ritt characteristic sets were explored in [1] and then made clearer in [8] with the concept of W-characteristic sets.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"41 1","pages":"142-144"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On W-characteristic sets of lexicographic Gröbner bases\",\"authors\":\"Chenqi Mou, Dongming Wang\",\"doi\":\"10.1145/3338637.3338647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structures of lexicographic (LEX) Gröbner bases were studied first by Lazard [4] for bivariate ideals and then extended to general zero-dimensional multivariate (radical) ideals [3, 6, 2]. Based on the structures of LEX Gröbner bases, algorithms have been proposed to compute triangular decompositions out of LEX Gröbner bases for zero-dimensional ideals [5, 2]. The relationships between LEX Gröbner bases and Ritt characteristic sets were explored in [1] and then made clearer in [8] with the concept of W-characteristic sets.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"41 1\",\"pages\":\"142-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338637.3338647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

lexicographic (LEX) Gröbner碱基的结构首先由Lazard[4]对二元理想进行了研究,然后扩展到一般的零维多元(根)理想[3,6,2]。基于LEX Gröbner基的结构,已经提出了从LEX Gröbner基计算零维理想三角分解的算法[5,2]。在[1]中探讨了LEX Gröbner碱基与Ritt特征集之间的关系,在[8]中用w特征集的概念更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On W-characteristic sets of lexicographic Gröbner bases
The structures of lexicographic (LEX) Gröbner bases were studied first by Lazard [4] for bivariate ideals and then extended to general zero-dimensional multivariate (radical) ideals [3, 6, 2]. Based on the structures of LEX Gröbner bases, algorithms have been proposed to compute triangular decompositions out of LEX Gröbner bases for zero-dimensional ideals [5, 2]. The relationships between LEX Gröbner bases and Ritt characteristic sets were explored in [1] and then made clearer in [8] with the concept of W-characteristic sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信