幂级数创新的一阶整数值移动平均过程

IF 1 Q3 Mathematics
E. Mahmoudi, Ameneh Rostami
{"title":"幂级数创新的一阶整数值移动平均过程","authors":"E. Mahmoudi, Ameneh Rostami","doi":"10.2991/jsta.d.200917.001","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a first-order nonnegative integer-valuedmoving average process with power series innovations based on a Poisson thinning operator (PINMAPS(1)) formodeling overdispersed, equidispersed and underdispersed count time series. This process contains the PINMA process with geometric, Bernoulli, Poisson, binomial, negative binomial and logarithmic innovations which some of them are studied in details. Some statistical properties of the process are obtained. The unknown parameters of the model are estimated using the Yule-Walker, conditional least squares and least squares feasible generalized methods. Also, the performance of estimators is evaluated using a simulation study. Finally, we apply the model to three real data set and show the ability of the model for predicting data compared to competing models.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"85 1","pages":"415-431"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Order Integer-Valued Moving Average Process with Power Series Innovations\",\"authors\":\"E. Mahmoudi, Ameneh Rostami\",\"doi\":\"10.2991/jsta.d.200917.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a first-order nonnegative integer-valuedmoving average process with power series innovations based on a Poisson thinning operator (PINMAPS(1)) formodeling overdispersed, equidispersed and underdispersed count time series. This process contains the PINMA process with geometric, Bernoulli, Poisson, binomial, negative binomial and logarithmic innovations which some of them are studied in details. Some statistical properties of the process are obtained. The unknown parameters of the model are estimated using the Yule-Walker, conditional least squares and least squares feasible generalized methods. Also, the performance of estimators is evaluated using a simulation study. Finally, we apply the model to three real data set and show the ability of the model for predicting data compared to competing models.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":\"85 1\",\"pages\":\"415-431\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.200917.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200917.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文基于泊松稀疏算子(PINMAPS(1)),引入了一阶非负整数值移动平均过程的幂级数创新,用于模拟过分散、等分散和欠分散的计数时间序列。该过程包含几何、伯努利、泊松、二项、负二项和对数创新的PINMA过程,并对其中的一些创新进行了详细的研究。得到了该过程的一些统计性质。采用Yule-Walker、条件最小二乘和最小二乘可行广义方法对模型的未知参数进行估计。同时,通过仿真研究对估计器的性能进行了评价。最后,我们将该模型应用于三个实际数据集,并与竞争模型进行了比较,证明了该模型对数据的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Order Integer-Valued Moving Average Process with Power Series Innovations
In this paper, we introduce a first-order nonnegative integer-valuedmoving average process with power series innovations based on a Poisson thinning operator (PINMAPS(1)) formodeling overdispersed, equidispersed and underdispersed count time series. This process contains the PINMA process with geometric, Bernoulli, Poisson, binomial, negative binomial and logarithmic innovations which some of them are studied in details. Some statistical properties of the process are obtained. The unknown parameters of the model are estimated using the Yule-Walker, conditional least squares and least squares feasible generalized methods. Also, the performance of estimators is evaluated using a simulation study. Finally, we apply the model to three real data set and show the ability of the model for predicting data compared to competing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信