基于偶然接触的运动规划

Elod Páll, Arne Sieverling, O. Brock
{"title":"基于偶然接触的运动规划","authors":"Elod Páll, Arne Sieverling, O. Brock","doi":"10.1109/IROS.2018.8594365","DOIUrl":null,"url":null,"abstract":"A robot with contact sensing capability can reduce uncertainty relative to the environment by deliberately moving into contact and matching the resulting contact measurement to different possible states in the world. We present a manipulation planner that finds and sequences these actions by reasoning explicitly about the uncertainty over the robot's state. The planner incrementally constructs a policy that covers all possible contact states during a manipulation and finds contingencies for each of them. In contrast to conformant planners (without contingencies), the planned contingent policies are more robust. We demonstrate this in simulated and real-world manipulation experiments. In contrast to POMDP-based planners, we show that our planner can be directly applied to high-dimensional configuration spaces.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"99 1","pages":"6615-6621"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Contingent Contact-Based Motion Planning\",\"authors\":\"Elod Páll, Arne Sieverling, O. Brock\",\"doi\":\"10.1109/IROS.2018.8594365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robot with contact sensing capability can reduce uncertainty relative to the environment by deliberately moving into contact and matching the resulting contact measurement to different possible states in the world. We present a manipulation planner that finds and sequences these actions by reasoning explicitly about the uncertainty over the robot's state. The planner incrementally constructs a policy that covers all possible contact states during a manipulation and finds contingencies for each of them. In contrast to conformant planners (without contingencies), the planned contingent policies are more robust. We demonstrate this in simulated and real-world manipulation experiments. In contrast to POMDP-based planners, we show that our planner can be directly applied to high-dimensional configuration spaces.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"99 1\",\"pages\":\"6615-6621\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8594365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

具有接触传感能力的机器人可以通过有意识地进入接触状态,并将由此产生的接触测量与世界上不同的可能状态相匹配,从而减少与环境相关的不确定性。我们提出了一个操作计划器,通过明确地推理机器人状态的不确定性来发现和排序这些动作。计划器增量地构建一个策略,该策略涵盖操作期间所有可能的接触状态,并为每个状态找到偶然性。与一致性计划(没有偶然性)相比,计划的偶然性策略更加健壮。我们在模拟和现实世界的操作实验中证明了这一点。与基于pomdp的规划器相比,我们证明了我们的规划器可以直接应用于高维配置空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contingent Contact-Based Motion Planning
A robot with contact sensing capability can reduce uncertainty relative to the environment by deliberately moving into contact and matching the resulting contact measurement to different possible states in the world. We present a manipulation planner that finds and sequences these actions by reasoning explicitly about the uncertainty over the robot's state. The planner incrementally constructs a policy that covers all possible contact states during a manipulation and finds contingencies for each of them. In contrast to conformant planners (without contingencies), the planned contingent policies are more robust. We demonstrate this in simulated and real-world manipulation experiments. In contrast to POMDP-based planners, we show that our planner can be directly applied to high-dimensional configuration spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信