扩扩大功能对夫妇的圆锥体存在和自然存在

Kompleks Ypp, Alwind Fattah, Siman Sekaran, Lamongan, Indah Saniatur Rohma, A. K. Umam
{"title":"扩扩大功能对夫妇的圆锥体存在和自然存在","authors":"Kompleks Ypp, Alwind Fattah, Siman Sekaran, Lamongan, Indah Saniatur Rohma, A. K. Umam","doi":"10.55273/jms.v3i1.193","DOIUrl":null,"url":null,"abstract":"The metric space is one of the most important designs in the field of functional analysis. In 2007 Huang and Zhang introduced the concept of a metric space into a cone metric space. They have proved several fixed point theorems for contraction functions using cone normality. The aim of this study is to examine the singularity of the common fixed points in the cone metric space for pairs of expansive functions. This research was conducted using the literature study method, namely by analyzing and outlining the designs already available in the literature. Furthermore, from this study it can be proven that the onto (surjective) function that satisfies the contractive condition in the cone metric space has a single fixed point together. \n ","PeriodicalId":31765,"journal":{"name":"Jurnal Pendidikan Matematika dan Sains","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EKSISTENSI DAN KETUNGGALAN TITIK TETAP BERSAMA DI RUANG METRIK CONE (KERUCUT) UNTUK PASANGAN FUNGSI EKSPANSIF\",\"authors\":\"Kompleks Ypp, Alwind Fattah, Siman Sekaran, Lamongan, Indah Saniatur Rohma, A. K. Umam\",\"doi\":\"10.55273/jms.v3i1.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metric space is one of the most important designs in the field of functional analysis. In 2007 Huang and Zhang introduced the concept of a metric space into a cone metric space. They have proved several fixed point theorems for contraction functions using cone normality. The aim of this study is to examine the singularity of the common fixed points in the cone metric space for pairs of expansive functions. This research was conducted using the literature study method, namely by analyzing and outlining the designs already available in the literature. Furthermore, from this study it can be proven that the onto (surjective) function that satisfies the contractive condition in the cone metric space has a single fixed point together. \\n \",\"PeriodicalId\":31765,\"journal\":{\"name\":\"Jurnal Pendidikan Matematika dan Sains\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Pendidikan Matematika dan Sains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55273/jms.v3i1.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Pendidikan Matematika dan Sains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55273/jms.v3i1.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

度量空间是泛函分析领域中最重要的设计之一。2007年Huang和Zhang将度量空间的概念引入到圆锥度量空间中。他们利用锥正态性证明了收缩函数的几个不动点定理。本文的目的是研究膨胀函数对在圆锥度量空间中的公共不动点的奇异性。本研究采用文献研究法进行,即通过分析和概述文献中已有的设计。进一步证明了圆锥度量空间中满足压缩条件的映满函数有一个不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EKSISTENSI DAN KETUNGGALAN TITIK TETAP BERSAMA DI RUANG METRIK CONE (KERUCUT) UNTUK PASANGAN FUNGSI EKSPANSIF
The metric space is one of the most important designs in the field of functional analysis. In 2007 Huang and Zhang introduced the concept of a metric space into a cone metric space. They have proved several fixed point theorems for contraction functions using cone normality. The aim of this study is to examine the singularity of the common fixed points in the cone metric space for pairs of expansive functions. This research was conducted using the literature study method, namely by analyzing and outlining the designs already available in the literature. Furthermore, from this study it can be proven that the onto (surjective) function that satisfies the contractive condition in the cone metric space has a single fixed point together.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信