法头内部的动力在更高的维度上

Mi Hu
{"title":"法头内部的动力在更高的维度上","authors":"Mi Hu","doi":"10.2422/2036-2145.202301_004","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the behavior of orbits inside attracting basins in higher dimensions. Suppose $F(z, w)=(P(z), Q(w))$, where $P(z), Q(w)$ are two polynomials of degree $m_1, m_2\\geq2$ on $\\mathbb{C}$, $P(0)=Q(0)=0,$ and $0<|P'(0)|, |Q'(0)|<1.$ Let $\\Omega$ be the immediate attracting basin of $F(z, w)$. Then there is a constant $C$ such that for every point $(z_0, w_0)\\in \\Omega$, there exists a point $(\\tilde{z}, \\tilde{w})\\in \\cup_k F^{-k}(0, 0), k\\geq0$ so that $d_\\Omega\\big((z_0, w_0), (\\tilde{z}, \\tilde{w})\\big)\\leq C, d_\\Omega$ is the Kobayashi distance on $\\Omega$. However, for many other cases, this result is invalid.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics inside Fatou sets in higher dimensions\",\"authors\":\"Mi Hu\",\"doi\":\"10.2422/2036-2145.202301_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the behavior of orbits inside attracting basins in higher dimensions. Suppose $F(z, w)=(P(z), Q(w))$, where $P(z), Q(w)$ are two polynomials of degree $m_1, m_2\\\\geq2$ on $\\\\mathbb{C}$, $P(0)=Q(0)=0,$ and $0<|P'(0)|, |Q'(0)|<1.$ Let $\\\\Omega$ be the immediate attracting basin of $F(z, w)$. Then there is a constant $C$ such that for every point $(z_0, w_0)\\\\in \\\\Omega$, there exists a point $(\\\\tilde{z}, \\\\tilde{w})\\\\in \\\\cup_k F^{-k}(0, 0), k\\\\geq0$ so that $d_\\\\Omega\\\\big((z_0, w_0), (\\\\tilde{z}, \\\\tilde{w})\\\\big)\\\\leq C, d_\\\\Omega$ is the Kobayashi distance on $\\\\Omega$. However, for many other cases, this result is invalid.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202301_004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202301_004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了高维吸引盆地内轨道的行为。设$F(z, w)=(P(z), Q(w))$,其中$P(z), Q(w)$为$\mathbb{C}$、$P(0)=Q(0)=0,$和$0<|P'(0)|, |Q'(0)|<1.$上的两个$m_1, m_2\geq2$次多项式,设$\Omega$为$F(z, w)$的直接吸引盆地。然后有一个常数$C$,使得对于每个点$(z_0, w_0)\in \Omega$,存在一个点$(\tilde{z}, \tilde{w})\in \cup_k F^{-k}(0, 0), k\geq0$,使得$d_\Omega\big((z_0, w_0), (\tilde{z}, \tilde{w})\big)\leq C, d_\Omega$是$\Omega$上的小林距离。然而,对于许多其他情况,这个结果是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics inside Fatou sets in higher dimensions
In this paper, we investigate the behavior of orbits inside attracting basins in higher dimensions. Suppose $F(z, w)=(P(z), Q(w))$, where $P(z), Q(w)$ are two polynomials of degree $m_1, m_2\geq2$ on $\mathbb{C}$, $P(0)=Q(0)=0,$ and $0<|P'(0)|, |Q'(0)|<1.$ Let $\Omega$ be the immediate attracting basin of $F(z, w)$. Then there is a constant $C$ such that for every point $(z_0, w_0)\in \Omega$, there exists a point $(\tilde{z}, \tilde{w})\in \cup_k F^{-k}(0, 0), k\geq0$ so that $d_\Omega\big((z_0, w_0), (\tilde{z}, \tilde{w})\big)\leq C, d_\Omega$ is the Kobayashi distance on $\Omega$. However, for many other cases, this result is invalid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信