关于基本群与多纤维铅笔之间的联系

IF 0.4 Q4 MATHEMATICS
Enrique Artal Bartolo, J. I. Cogolludo-Agust'in
{"title":"关于基本群与多纤维铅笔之间的联系","authors":"Enrique Artal Bartolo, J. I. Cogolludo-Agust'in","doi":"10.5427/jsing.2010.2a","DOIUrl":null,"url":null,"abstract":"We present two results about the relationship between fundamental groups of quasiprojective manifolds and linear systems on a projectivization. We prove the existence of a plane curve with non-abelian fundamental group of the complement which does not admit a mapping onto an orbifold with non-abelian fundamental group. We also find an affine manifold whose irreducible components of its characteristic varieties do not come from the pull-back of the characteristic varieties of an orbifold.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2010-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On the connection between fundamental groups and pencils with multiple fibers\",\"authors\":\"Enrique Artal Bartolo, J. I. Cogolludo-Agust'in\",\"doi\":\"10.5427/jsing.2010.2a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two results about the relationship between fundamental groups of quasiprojective manifolds and linear systems on a projectivization. We prove the existence of a plane curve with non-abelian fundamental group of the complement which does not admit a mapping onto an orbifold with non-abelian fundamental group. We also find an affine manifold whose irreducible components of its characteristic varieties do not come from the pull-back of the characteristic varieties of an orbifold.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2010-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2010.2a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2010.2a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

给出了拟投影流形的基群与投影上的线性系统之间关系的两个结果。证明了补的非阿贝尔基本群平面曲线的存在性,该曲线不允许映射到具有非阿贝尔基本群的轨道上。我们还发现了一个仿射流形,其特征变体的不可约分量不是来自于轨道的特征变体的回拉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the connection between fundamental groups and pencils with multiple fibers
We present two results about the relationship between fundamental groups of quasiprojective manifolds and linear systems on a projectivization. We prove the existence of a plane curve with non-abelian fundamental group of the complement which does not admit a mapping onto an orbifold with non-abelian fundamental group. We also find an affine manifold whose irreducible components of its characteristic varieties do not come from the pull-back of the characteristic varieties of an orbifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信