费米天线阵列在雷达呼吸测量中的应用

Z. Salmani, Changzhan Gu, H. Ren, Changzhi Li, Hualiang Zhang
{"title":"费米天线阵列在雷达呼吸测量中的应用","authors":"Z. Salmani, Changzhan Gu, H. Ren, Changzhi Li, Hualiang Zhang","doi":"10.1109/IWAT.2012.6178398","DOIUrl":null,"url":null,"abstract":"This paper presents the design of Fermi antenna array with improved gain for radar respiration measurement. A six-element Fermi antenna array working at 5.8 GHz is optimally designed and integrated with the respiration radar system. Specifically, to easily feed the antenna array as well as reduce the total size of the array system, a feeding network based on 0-degree phase shifters is employed along with suitable impedance transformers. The whole system is proposed to function as a radar sensor for respiration rate measurement, which is known as a promising non-contact and non-invasive approach for lung cancer radiotherapy. The measurement results verify the improved performance of the proposed system for radar respiration measurement in motion-adaptive lung cancer radiotherapy.","PeriodicalId":6341,"journal":{"name":"2012 IEEE International Workshop on Antenna Technology (iWAT)","volume":"99 1","pages":"60-63"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of fermi-antenna array for radar respiration measurement\",\"authors\":\"Z. Salmani, Changzhan Gu, H. Ren, Changzhi Li, Hualiang Zhang\",\"doi\":\"10.1109/IWAT.2012.6178398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of Fermi antenna array with improved gain for radar respiration measurement. A six-element Fermi antenna array working at 5.8 GHz is optimally designed and integrated with the respiration radar system. Specifically, to easily feed the antenna array as well as reduce the total size of the array system, a feeding network based on 0-degree phase shifters is employed along with suitable impedance transformers. The whole system is proposed to function as a radar sensor for respiration rate measurement, which is known as a promising non-contact and non-invasive approach for lung cancer radiotherapy. The measurement results verify the improved performance of the proposed system for radar respiration measurement in motion-adaptive lung cancer radiotherapy.\",\"PeriodicalId\":6341,\"journal\":{\"name\":\"2012 IEEE International Workshop on Antenna Technology (iWAT)\",\"volume\":\"99 1\",\"pages\":\"60-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Antenna Technology (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2012.6178398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2012.6178398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种改进增益的费米天线阵列,用于雷达呼吸测量。优化设计了工作频率为5.8 GHz的六元费米天线阵列,并与呼吸雷达系统集成。具体而言,为了方便馈电天线阵列并减小阵列系统的总体尺寸,采用了基于0度移相器的馈电网络以及合适的阻抗变压器。整个系统被提议作为呼吸速率测量的雷达传感器,这被称为肺癌放射治疗的一种有前途的非接触和非侵入性方法。测量结果验证了所提出的雷达呼吸测量系统在运动自适应肺癌放射治疗中的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of fermi-antenna array for radar respiration measurement
This paper presents the design of Fermi antenna array with improved gain for radar respiration measurement. A six-element Fermi antenna array working at 5.8 GHz is optimally designed and integrated with the respiration radar system. Specifically, to easily feed the antenna array as well as reduce the total size of the array system, a feeding network based on 0-degree phase shifters is employed along with suitable impedance transformers. The whole system is proposed to function as a radar sensor for respiration rate measurement, which is known as a promising non-contact and non-invasive approach for lung cancer radiotherapy. The measurement results verify the improved performance of the proposed system for radar respiration measurement in motion-adaptive lung cancer radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信