非参数分量与隐马尔可夫模型的混合

E. Gassiat
{"title":"非参数分量与隐马尔可夫模型的混合","authors":"E. Gassiat","doi":"10.1201/9780429055911-14","DOIUrl":null,"url":null,"abstract":"The topic of this chapter is statistical inference of nonparametric finite mixtures. The latent variables (and thus the observations) will be mostly taken independent and identically distributed, but in some cases, they will be possibly non independently distributed. For each observation, the corresponding latent variable indicates from which population the observation comes from. In particular, when the latent variables form a Markov chain, the observation process will comme from a non parametric hidden Markov model (HMM) with finite state space. We would like to emphasise the fact that the nonparametric modeling will concern only the conditional distribution of the observations, conditional on the latent variables, not the mixing distribution. Nonparametric modeling of the mixing distribution (with possibly infinitely denumerable or continuous support) is considered in Chapter 6. To fix ideas, assume that a random variable X follows a distribution","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mixtures of Nonparametric Components and Hidden Markov Models\",\"authors\":\"E. Gassiat\",\"doi\":\"10.1201/9780429055911-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topic of this chapter is statistical inference of nonparametric finite mixtures. The latent variables (and thus the observations) will be mostly taken independent and identically distributed, but in some cases, they will be possibly non independently distributed. For each observation, the corresponding latent variable indicates from which population the observation comes from. In particular, when the latent variables form a Markov chain, the observation process will comme from a non parametric hidden Markov model (HMM) with finite state space. We would like to emphasise the fact that the nonparametric modeling will concern only the conditional distribution of the observations, conditional on the latent variables, not the mixing distribution. Nonparametric modeling of the mixing distribution (with possibly infinitely denumerable or continuous support) is considered in Chapter 6. To fix ideas, assume that a random variable X follows a distribution\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本章的主题是非参数有限混合的统计推断。潜在变量(以及观测值)大多是独立和同分布的,但在某些情况下,它们可能是非独立分布的。对于每个观测值,对应的潜在变量表示该观测值来自哪个种群。特别是当潜变量形成马尔可夫链时,观测过程将来自有限状态空间的非参数隐马尔可夫模型(HMM)。我们想强调的事实是,非参数建模将只关注观测值的条件分布,条件是潜在变量,而不是混合分布。第6章考虑了混合分布的非参数建模(可能有无限数或连续支持)。为了修正想法,假设随机变量X遵循一个分布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixtures of Nonparametric Components and Hidden Markov Models
The topic of this chapter is statistical inference of nonparametric finite mixtures. The latent variables (and thus the observations) will be mostly taken independent and identically distributed, but in some cases, they will be possibly non independently distributed. For each observation, the corresponding latent variable indicates from which population the observation comes from. In particular, when the latent variables form a Markov chain, the observation process will comme from a non parametric hidden Markov model (HMM) with finite state space. We would like to emphasise the fact that the nonparametric modeling will concern only the conditional distribution of the observations, conditional on the latent variables, not the mixing distribution. Nonparametric modeling of the mixing distribution (with possibly infinitely denumerable or continuous support) is considered in Chapter 6. To fix ideas, assume that a random variable X follows a distribution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信