{"title":"人类血液代谢物与哮喘之间的因果关系:孟德尔随机化研究","authors":"Yong-Qing Zhu, Xiao-Yan Meng, Jing-Hua Yang","doi":"10.29328/journal.aaai.1001032","DOIUrl":null,"url":null,"abstract":"Background: Asthma, a chronic inflammatory respiratory ailment, is characterized by variable airflow obstruction and heightened bronchial reactivity. Despite therapeutic advancements, a comprehensive comprehension of its underlying metabolic mechanisms remains elusive. Metabolomics has emerged as a powerful approach to investigating the complex connections between serum metabolites and disease pathogenesis. However, exploring the causal relationship between serum metabolites and asthma susceptibility demands meticulous examination to unveil potential therapeutic targets. Methods: Mendelian randomization (MR) approach was explored to investigate the potential causal associations between serum metabolites and asthma risk. The main analysis employed the inverse variance weighted method, supported by supplementary approaches such as MR-Egger, weighted median, weighted mode, and sample mode. To enhance the strength and credibility of our results, we conducted sensitivity analyses encompassing heterogeneity testing, assessment of horizontal pleiotropy, and leave-one-out analysis. Additionally, pathway enrichment analysis was performed to further elucidate the results. Results: We identified 18 known and 12 unknown metabolites with potential associations with asthma risk. Among known metabolites, seven exhibited protective effects (e.g., 4-acetamidobutanoate, allantoin, kynurenine, oxidized bilirubin*), while eleven were considered risk factors (e.g., ornithine, N-acetylornithine, alanine). Through the integration of four additional MR models and sensitivity analyses, we revealed a connection between 4-acetamidobutanoate and approximately 6% lower asthma risk (OR = 0.94, 95% CI: 0.90–0.98). Conclusions: Our MR analysis uncovered protective and risk-associated metabolites, alongside 12 unknown metabolites linked to asthma. Notably, 4-acetamidobutanoate demonstrated a nominal 6% reduction in asthma risk, highlighting its potential significance.","PeriodicalId":7547,"journal":{"name":"Allergy, Asthma & Immunology Research","volume":"110 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Link between Human Blood Metabolites and Asthma: An Investigation Using Mendelian Randomization\",\"authors\":\"Yong-Qing Zhu, Xiao-Yan Meng, Jing-Hua Yang\",\"doi\":\"10.29328/journal.aaai.1001032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Asthma, a chronic inflammatory respiratory ailment, is characterized by variable airflow obstruction and heightened bronchial reactivity. Despite therapeutic advancements, a comprehensive comprehension of its underlying metabolic mechanisms remains elusive. Metabolomics has emerged as a powerful approach to investigating the complex connections between serum metabolites and disease pathogenesis. However, exploring the causal relationship between serum metabolites and asthma susceptibility demands meticulous examination to unveil potential therapeutic targets. Methods: Mendelian randomization (MR) approach was explored to investigate the potential causal associations between serum metabolites and asthma risk. The main analysis employed the inverse variance weighted method, supported by supplementary approaches such as MR-Egger, weighted median, weighted mode, and sample mode. To enhance the strength and credibility of our results, we conducted sensitivity analyses encompassing heterogeneity testing, assessment of horizontal pleiotropy, and leave-one-out analysis. Additionally, pathway enrichment analysis was performed to further elucidate the results. Results: We identified 18 known and 12 unknown metabolites with potential associations with asthma risk. Among known metabolites, seven exhibited protective effects (e.g., 4-acetamidobutanoate, allantoin, kynurenine, oxidized bilirubin*), while eleven were considered risk factors (e.g., ornithine, N-acetylornithine, alanine). Through the integration of four additional MR models and sensitivity analyses, we revealed a connection between 4-acetamidobutanoate and approximately 6% lower asthma risk (OR = 0.94, 95% CI: 0.90–0.98). Conclusions: Our MR analysis uncovered protective and risk-associated metabolites, alongside 12 unknown metabolites linked to asthma. Notably, 4-acetamidobutanoate demonstrated a nominal 6% reduction in asthma risk, highlighting its potential significance.\",\"PeriodicalId\":7547,\"journal\":{\"name\":\"Allergy, Asthma & Immunology Research\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Allergy, Asthma & Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.29328/journal.aaai.1001032\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy, Asthma & Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.29328/journal.aaai.1001032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
Causal Link between Human Blood Metabolites and Asthma: An Investigation Using Mendelian Randomization
Background: Asthma, a chronic inflammatory respiratory ailment, is characterized by variable airflow obstruction and heightened bronchial reactivity. Despite therapeutic advancements, a comprehensive comprehension of its underlying metabolic mechanisms remains elusive. Metabolomics has emerged as a powerful approach to investigating the complex connections between serum metabolites and disease pathogenesis. However, exploring the causal relationship between serum metabolites and asthma susceptibility demands meticulous examination to unveil potential therapeutic targets. Methods: Mendelian randomization (MR) approach was explored to investigate the potential causal associations between serum metabolites and asthma risk. The main analysis employed the inverse variance weighted method, supported by supplementary approaches such as MR-Egger, weighted median, weighted mode, and sample mode. To enhance the strength and credibility of our results, we conducted sensitivity analyses encompassing heterogeneity testing, assessment of horizontal pleiotropy, and leave-one-out analysis. Additionally, pathway enrichment analysis was performed to further elucidate the results. Results: We identified 18 known and 12 unknown metabolites with potential associations with asthma risk. Among known metabolites, seven exhibited protective effects (e.g., 4-acetamidobutanoate, allantoin, kynurenine, oxidized bilirubin*), while eleven were considered risk factors (e.g., ornithine, N-acetylornithine, alanine). Through the integration of four additional MR models and sensitivity analyses, we revealed a connection between 4-acetamidobutanoate and approximately 6% lower asthma risk (OR = 0.94, 95% CI: 0.90–0.98). Conclusions: Our MR analysis uncovered protective and risk-associated metabolites, alongside 12 unknown metabolites linked to asthma. Notably, 4-acetamidobutanoate demonstrated a nominal 6% reduction in asthma risk, highlighting its potential significance.
期刊介绍:
The journal features cutting-edge original research, brief communications, and state-of-the-art reviews in the specialties of allergy, asthma, and immunology, including clinical and experimental studies and instructive case reports. Contemporary reviews summarize information on topics for researchers and physicians in the fields of allergy and immunology. As of January 2017, AAIR do not accept case reports. However, if it is a clinically important case, authors can submit it in the form of letter to the Editor. Editorials and letters to the Editor explore controversial issues and encourage further discussion among physicians dealing with allergy, immunology, pediatric respirology, and related medical fields. AAIR also features topics in practice and management and recent advances in equipment and techniques for clinicians concerned with clinical manifestations of allergies and pediatric respiratory diseases.