基于自适应三维卷积神经网络的三维相干衍射成像重建方法

A. Scheinker, R. Pokharel
{"title":"基于自适应三维卷积神经网络的三维相干衍射成像重建方法","authors":"A. Scheinker, R. Pokharel","doi":"10.1063/5.0014725","DOIUrl":null,"url":null,"abstract":"We present a novel adaptive machine-learning based approach for reconstructing three-dimensional (3D) crystals from coherent diffraction imaging (CDI). We represent the crystals using spherical harmonics (SH) and generate corresponding synthetic diffraction patterns. We utilize 3D convolutional neural networks (CNN) to learn a mapping between 3D diffraction volumes and the SH which describe the boundary of the physical volumes from which they were generated. We use the 3D CNN-predicted SH coefficients as the initial guesses which are then fine tuned using adaptive model independent feedback for improved accuracy.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Adaptive 3D convolutional neural network-based reconstruction method for 3D coherent diffraction imaging\",\"authors\":\"A. Scheinker, R. Pokharel\",\"doi\":\"10.1063/5.0014725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel adaptive machine-learning based approach for reconstructing three-dimensional (3D) crystals from coherent diffraction imaging (CDI). We represent the crystals using spherical harmonics (SH) and generate corresponding synthetic diffraction patterns. We utilize 3D convolutional neural networks (CNN) to learn a mapping between 3D diffraction volumes and the SH which describe the boundary of the physical volumes from which they were generated. We use the 3D CNN-predicted SH coefficients as the initial guesses which are then fine tuned using adaptive model independent feedback for improved accuracy.\",\"PeriodicalId\":8424,\"journal\":{\"name\":\"arXiv: Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0014725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0014725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出了一种新的基于自适应机器学习的方法,用于从相干衍射成像(CDI)中重建三维(3D)晶体。我们用球面谐波(SH)来表示晶体,并生成相应的合成衍射图。我们利用三维卷积神经网络(CNN)来学习三维衍射体和描述它们产生的物理体边界的SH之间的映射。我们使用3D cnn预测的SH系数作为初始猜测,然后使用自适应模型独立反馈进行微调以提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive 3D convolutional neural network-based reconstruction method for 3D coherent diffraction imaging
We present a novel adaptive machine-learning based approach for reconstructing three-dimensional (3D) crystals from coherent diffraction imaging (CDI). We represent the crystals using spherical harmonics (SH) and generate corresponding synthetic diffraction patterns. We utilize 3D convolutional neural networks (CNN) to learn a mapping between 3D diffraction volumes and the SH which describe the boundary of the physical volumes from which they were generated. We use the 3D CNN-predicted SH coefficients as the initial guesses which are then fine tuned using adaptive model independent feedback for improved accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信