超立方体中有界距离分配的路由问题

N. Bagherzadeh, M. Dowd
{"title":"超立方体中有界距离分配的路由问题","authors":"N. Bagherzadeh, M. Dowd","doi":"10.1109/MPCS.1994.367085","DOIUrl":null,"url":null,"abstract":"The problem of whether an assignment in the hypercube H/sub n/, where the distance from the source to the destination is bounded, can be routed with minimum distance and bounded congestion is considered. It is shown that this is so, if assignments of given \"type\" can be so routed. Of particular interest is whether for distance 3 and fixed type, minimum distance and congestion 1 can be obtained. This is shown for n/spl les/6; on the other hand the method suggests possible counter examples. Also, it is shown that distance 2 permutations in H/sub 4/ have congestion 1 routings.<<ETX>>","PeriodicalId":64175,"journal":{"name":"专用汽车","volume":"20 1","pages":"126-131"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Problems on routing bounded distance assignments in hypercubes\",\"authors\":\"N. Bagherzadeh, M. Dowd\",\"doi\":\"10.1109/MPCS.1994.367085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of whether an assignment in the hypercube H/sub n/, where the distance from the source to the destination is bounded, can be routed with minimum distance and bounded congestion is considered. It is shown that this is so, if assignments of given \\\"type\\\" can be so routed. Of particular interest is whether for distance 3 and fixed type, minimum distance and congestion 1 can be obtained. This is shown for n/spl les/6; on the other hand the method suggests possible counter examples. Also, it is shown that distance 2 permutations in H/sub 4/ have congestion 1 routings.<<ETX>>\",\"PeriodicalId\":64175,\"journal\":{\"name\":\"专用汽车\",\"volume\":\"20 1\",\"pages\":\"126-131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"专用汽车\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/MPCS.1994.367085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"专用汽车","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/MPCS.1994.367085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了源到目的的距离有界的超立方体H/sub / n/中的分配能否以最小距离和有界拥塞进行路由的问题。如果给定“类型”的赋值可以如此路由,则证明了这一点。特别感兴趣的是,对于距离3和固定类型,是否可以获得最小距离和拥塞1。这显示在n/spl /6;另一方面,该方法提出了可能的反例。此外,还显示了H/sub /中的距离2排列具有拥塞1路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Problems on routing bounded distance assignments in hypercubes
The problem of whether an assignment in the hypercube H/sub n/, where the distance from the source to the destination is bounded, can be routed with minimum distance and bounded congestion is considered. It is shown that this is so, if assignments of given "type" can be so routed. Of particular interest is whether for distance 3 and fixed type, minimum distance and congestion 1 can be obtained. This is shown for n/spl les/6; on the other hand the method suggests possible counter examples. Also, it is shown that distance 2 permutations in H/sub 4/ have congestion 1 routings.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信