用有限元分析方法提取实际焊点蠕变试验材料参数

M. Rollig, S. Wiese, K. Wolter
{"title":"用有限元分析方法提取实际焊点蠕变试验材料参数","authors":"M. Rollig, S. Wiese, K. Wolter","doi":"10.1109/ESIME.2006.1644044","DOIUrl":null,"url":null,"abstract":"A modern approach to determine material data of solder alloys such as SnAg and SnAgCu is to measure the mechanical behaviour direct on a CSP/BGA solder connection. Advantages of that technique of measurement on industrial manufactured solder bumps are the considerations of miniaturized volumes and the material diffusion from connection pad into the alloy during reflow soldering process. Compared to the tensile test the shear experiment differs in the way of initiation the force load into the solder alloy. The shear force load inducts a multiaxial state of stress. This is the reason for the confrontation with a higher effort into the conversion procedure to determine specific coefficients for the material law. In several publications creep data were published based on shear force load measurements and applied cylinder model to convert primary data into equivalent values. In practice, the specimen bumps may have been different in their shape, depending on pad geometry, solder volume and weight of electronic component. How does the shape of solder joints influence the creep behaviour? A form parameter has been introduced to be able to describe a wide range of solder bump shapes. Every bump shape from barrel to hyperbolic can now be regarded. The form parameter also takes place in the conversion of experimental data into equivalent data. The determined creep material laws, based on the improved analytic model, describe the deformation behaviour of solder joints more accurately, than the commonly assigned creep laws using the pure cylinder model. The shape effect is shown on a FEM analysis of the experimental setup of creep measurements on shape varied Sn96.5Ag3.5 solder bumps. In general, during FEM based material modelling the coefficients of the material laws need to be stepwise changed until the right behaviour occurs. These iterations can stretch over a long time. The improved analytical model shows the potential to shorten the coefficient determination of material laws","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Extraction of material parameters for creep experiments on real solder-joints by FE analysis\",\"authors\":\"M. Rollig, S. Wiese, K. Wolter\",\"doi\":\"10.1109/ESIME.2006.1644044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modern approach to determine material data of solder alloys such as SnAg and SnAgCu is to measure the mechanical behaviour direct on a CSP/BGA solder connection. Advantages of that technique of measurement on industrial manufactured solder bumps are the considerations of miniaturized volumes and the material diffusion from connection pad into the alloy during reflow soldering process. Compared to the tensile test the shear experiment differs in the way of initiation the force load into the solder alloy. The shear force load inducts a multiaxial state of stress. This is the reason for the confrontation with a higher effort into the conversion procedure to determine specific coefficients for the material law. In several publications creep data were published based on shear force load measurements and applied cylinder model to convert primary data into equivalent values. In practice, the specimen bumps may have been different in their shape, depending on pad geometry, solder volume and weight of electronic component. How does the shape of solder joints influence the creep behaviour? A form parameter has been introduced to be able to describe a wide range of solder bump shapes. Every bump shape from barrel to hyperbolic can now be regarded. The form parameter also takes place in the conversion of experimental data into equivalent data. The determined creep material laws, based on the improved analytic model, describe the deformation behaviour of solder joints more accurately, than the commonly assigned creep laws using the pure cylinder model. The shape effect is shown on a FEM analysis of the experimental setup of creep measurements on shape varied Sn96.5Ag3.5 solder bumps. In general, during FEM based material modelling the coefficients of the material laws need to be stepwise changed until the right behaviour occurs. These iterations can stretch over a long time. The improved analytical model shows the potential to shorten the coefficient determination of material laws\",\"PeriodicalId\":60796,\"journal\":{\"name\":\"微纳电子与智能制造\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微纳电子与智能制造\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2006.1644044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1644044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

确定焊料合金(如SnAg和SnAgCu)材料数据的现代方法是直接在CSP/BGA焊料连接上测量机械行为。这种测量工业制造焊点凸点的技术的优点是考虑了体积的小型化和回流焊接过程中材料从连接垫扩散到合金中的问题。与拉伸试验相比,剪切试验在力载荷进入钎料合金的方式上有所不同。剪切力荷载引起多轴应力状态。这就是为什么要用更高的精力来确定换算过程中的具体系数为物质定律。在一些出版物中,蠕变数据是基于剪切力载荷测量,并应用圆柱模型将原始数据转换为等效值。在实践中,试样凸起的形状可能会有所不同,这取决于焊盘的几何形状、焊料体积和电子元件的重量。焊点的形状如何影响蠕变行为?引入了一种形式参数,以便能够描述各种各样的凸点形状。现在可以考虑从桶形到双曲线的每一个凸起形状。在将实验数据转换为等效数据时,也存在形式参数。基于改进的解析模型确定的材料蠕变规律,比通常使用纯圆柱体模型确定的蠕变规律更准确地描述了焊点的变形行为。通过对不同形状Sn96.5Ag3.5焊点蠕变测量实验装置的有限元分析,得出了形状效应。一般来说,在基于有限元的材料建模过程中,需要逐步改变材料定律的系数,直到出现正确的行为。这些迭代可能会持续很长时间。改进的分析模型显示出缩短物质定律系数确定的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of material parameters for creep experiments on real solder-joints by FE analysis
A modern approach to determine material data of solder alloys such as SnAg and SnAgCu is to measure the mechanical behaviour direct on a CSP/BGA solder connection. Advantages of that technique of measurement on industrial manufactured solder bumps are the considerations of miniaturized volumes and the material diffusion from connection pad into the alloy during reflow soldering process. Compared to the tensile test the shear experiment differs in the way of initiation the force load into the solder alloy. The shear force load inducts a multiaxial state of stress. This is the reason for the confrontation with a higher effort into the conversion procedure to determine specific coefficients for the material law. In several publications creep data were published based on shear force load measurements and applied cylinder model to convert primary data into equivalent values. In practice, the specimen bumps may have been different in their shape, depending on pad geometry, solder volume and weight of electronic component. How does the shape of solder joints influence the creep behaviour? A form parameter has been introduced to be able to describe a wide range of solder bump shapes. Every bump shape from barrel to hyperbolic can now be regarded. The form parameter also takes place in the conversion of experimental data into equivalent data. The determined creep material laws, based on the improved analytic model, describe the deformation behaviour of solder joints more accurately, than the commonly assigned creep laws using the pure cylinder model. The shape effect is shown on a FEM analysis of the experimental setup of creep measurements on shape varied Sn96.5Ag3.5 solder bumps. In general, during FEM based material modelling the coefficients of the material laws need to be stepwise changed until the right behaviour occurs. These iterations can stretch over a long time. The improved analytical model shows the potential to shorten the coefficient determination of material laws
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
145
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信