高斯Log-Sobolev不等式和Santaló逆不等式中的缺陷

N. Gozlan
{"title":"高斯Log-Sobolev不等式和Santaló逆不等式中的缺陷","authors":"N. Gozlan","doi":"10.1093/IMRN/RNAB087","DOIUrl":null,"url":null,"abstract":"We establish dual equivalent forms involving relative entropy, Fisher information and optimal transport costs of inverse Santalo inequalities. We show in particular that the Mahler conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic Sobolev inequality. We also derive from existing results on inverse Santalo inequalities some sharp lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santaló Inequalities\",\"authors\":\"N. Gozlan\",\"doi\":\"10.1093/IMRN/RNAB087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish dual equivalent forms involving relative entropy, Fisher information and optimal transport costs of inverse Santalo inequalities. We show in particular that the Mahler conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic Sobolev inequality. We also derive from existing results on inverse Santalo inequalities some sharp lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

建立了涉及相对熵、Fisher信息和最优运输成本的逆Santalo不等式的对偶等价形式。我们特别证明了马勒猜想等价于高斯对数Sobolev不等式中亏损的某个维度下界。我们还从已有的关于逆Santalo不等式的结果中,导出了高斯对数Sobolev不等式中亏缺的一些明显下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Deficit in the Gaussian Log-Sobolev Inequality and Inverse Santaló Inequalities
We establish dual equivalent forms involving relative entropy, Fisher information and optimal transport costs of inverse Santalo inequalities. We show in particular that the Mahler conjecture is equivalent to some dimensional lower bound on the deficit in the Gaussian logarithmic Sobolev inequality. We also derive from existing results on inverse Santalo inequalities some sharp lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信