{"title":"荧光氧化锌量子点探针通过荧光共振能量转移研究葡萄糖-葡萄糖氧化酶相互作用","authors":"A. K. Verma, Z. Ansari","doi":"10.1166/sl.2020.4232","DOIUrl":null,"url":null,"abstract":"In this work, emphasis is to utilize FRET method to analyze GOx and glucose interaction using fluorescent ZnO QDs as the probes. Fluorescent ZnO and ZnOext QDs were synthesized using sol– gel technique and green synthesis method as donor and acceptor nanoprobes.\n Structural, optical and morphological characterization of QDS were carried out using UV-visible absorption, fluorescence, FTIR, XRD and field emission scanning electron microscopy. Band gap estimated from Tauc plot is 3.49 and 3.35 eV for ZnO and ZnOext QDs and XRD reveal Wurtzite\n structure of grown crystals. Systematic absorption study for ZnO–GOx and ZnOext–GOx reveal association constant of –8.3361 M–1 and –2.57646 M –1 for ZnO and ZnOext using Benesi-Hildebrand\n plot. The binding constant obtained from Stern-Volmer equation is 1.0466 μM –1 and 1.97 μM –1 for ZnO/ZnOext–GOx conjugate and suggest static quenching in the system. CD spectroscopy reveal native state\n of protein in conjugate sytem. Constant Förster radius (Ro) in ZnOext–GOx system suggest the average 〈κ2〉 as 2/3 and is independent of donor–acceptor distance as normally assumed in FRET system varies\n from ∼4.5% in ZnO–GOx and ∼5% in ZnOext–GOx system. It indicate better energy transferrin earlier system than formal. The physiological range of glucose from 60 mg–440 mg/dl using this technique in which ZnOext–GOx\n as donor probe exhibit better response towards glucose than ZnO–GOx system and correlated to the presence of phyotochemicals on the QD surface.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"37 1","pages":"351-365"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fluorescent ZnO Quantum Dot Probe to Study Glucose–Glucose Oxidase Interaction via Fluorescence Resonance Energy Transfer\",\"authors\":\"A. K. Verma, Z. Ansari\",\"doi\":\"10.1166/sl.2020.4232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, emphasis is to utilize FRET method to analyze GOx and glucose interaction using fluorescent ZnO QDs as the probes. Fluorescent ZnO and ZnOext QDs were synthesized using sol– gel technique and green synthesis method as donor and acceptor nanoprobes.\\n Structural, optical and morphological characterization of QDS were carried out using UV-visible absorption, fluorescence, FTIR, XRD and field emission scanning electron microscopy. Band gap estimated from Tauc plot is 3.49 and 3.35 eV for ZnO and ZnOext QDs and XRD reveal Wurtzite\\n structure of grown crystals. Systematic absorption study for ZnO–GOx and ZnOext–GOx reveal association constant of –8.3361 M–1 and –2.57646 M –1 for ZnO and ZnOext using Benesi-Hildebrand\\n plot. The binding constant obtained from Stern-Volmer equation is 1.0466 μM –1 and 1.97 μM –1 for ZnO/ZnOext–GOx conjugate and suggest static quenching in the system. CD spectroscopy reveal native state\\n of protein in conjugate sytem. Constant Förster radius (Ro) in ZnOext–GOx system suggest the average 〈κ2〉 as 2/3 and is independent of donor–acceptor distance as normally assumed in FRET system varies\\n from ∼4.5% in ZnO–GOx and ∼5% in ZnOext–GOx system. It indicate better energy transferrin earlier system than formal. The physiological range of glucose from 60 mg–440 mg/dl using this technique in which ZnOext–GOx\\n as donor probe exhibit better response towards glucose than ZnO–GOx system and correlated to the presence of phyotochemicals on the QD surface.\",\"PeriodicalId\":21781,\"journal\":{\"name\":\"Sensor Letters\",\"volume\":\"37 1\",\"pages\":\"351-365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sl.2020.4232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fluorescent ZnO Quantum Dot Probe to Study Glucose–Glucose Oxidase Interaction via Fluorescence Resonance Energy Transfer
In this work, emphasis is to utilize FRET method to analyze GOx and glucose interaction using fluorescent ZnO QDs as the probes. Fluorescent ZnO and ZnOext QDs were synthesized using sol– gel technique and green synthesis method as donor and acceptor nanoprobes.
Structural, optical and morphological characterization of QDS were carried out using UV-visible absorption, fluorescence, FTIR, XRD and field emission scanning electron microscopy. Band gap estimated from Tauc plot is 3.49 and 3.35 eV for ZnO and ZnOext QDs and XRD reveal Wurtzite
structure of grown crystals. Systematic absorption study for ZnO–GOx and ZnOext–GOx reveal association constant of –8.3361 M–1 and –2.57646 M –1 for ZnO and ZnOext using Benesi-Hildebrand
plot. The binding constant obtained from Stern-Volmer equation is 1.0466 μM –1 and 1.97 μM –1 for ZnO/ZnOext–GOx conjugate and suggest static quenching in the system. CD spectroscopy reveal native state
of protein in conjugate sytem. Constant Förster radius (Ro) in ZnOext–GOx system suggest the average 〈κ2〉 as 2/3 and is independent of donor–acceptor distance as normally assumed in FRET system varies
from ∼4.5% in ZnO–GOx and ∼5% in ZnOext–GOx system. It indicate better energy transferrin earlier system than formal. The physiological range of glucose from 60 mg–440 mg/dl using this technique in which ZnOext–GOx
as donor probe exhibit better response towards glucose than ZnO–GOx system and correlated to the presence of phyotochemicals on the QD surface.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.