通过紧凑聚类挖掘实体属性同义词

Yanen Li, B. Hsu, ChengXiang Zhai, Kuansan Wang
{"title":"通过紧凑聚类挖掘实体属性同义词","authors":"Yanen Li, B. Hsu, ChengXiang Zhai, Kuansan Wang","doi":"10.1145/2505515.2505608","DOIUrl":null,"url":null,"abstract":"Entity attribute values, such as \"lord of the rings\" for movie.title or \"infant\" for shoe.gender, are atomic components of entity expressions. Discovering alternative surface forms of attribute values is important for improving entity recognition and retrieval. In this work, we propose a novel compact clustering framework to jointly identify synonyms for a set of attribute values. The framework can integrate signals from multiple information sources into a similarity function between attribute values. And the weights of these signals are optimized in an unsupervised manner. Extensive experiments across multiple domains demonstrate the effectiveness of our clustering framework for mining entity attribute synonyms.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mining entity attribute synonyms via compact clustering\",\"authors\":\"Yanen Li, B. Hsu, ChengXiang Zhai, Kuansan Wang\",\"doi\":\"10.1145/2505515.2505608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity attribute values, such as \\\"lord of the rings\\\" for movie.title or \\\"infant\\\" for shoe.gender, are atomic components of entity expressions. Discovering alternative surface forms of attribute values is important for improving entity recognition and retrieval. In this work, we propose a novel compact clustering framework to jointly identify synonyms for a set of attribute values. The framework can integrate signals from multiple information sources into a similarity function between attribute values. And the weights of these signals are optimized in an unsupervised manner. Extensive experiments across multiple domains demonstrate the effectiveness of our clustering framework for mining entity attribute synonyms.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

实体属性值,例如“指环王”表示电影。鞋的标题或“婴儿”。性别是实体表达式的原子组成部分。发现属性值的替代表面形式对于改进实体识别和检索非常重要。在这项工作中,我们提出了一种新的紧凑聚类框架来共同识别一组属性值的同义词。该框架可以将来自多个信息源的信号整合成属性值之间的相似函数。并以无监督的方式对这些信号的权重进行优化。跨多个领域的大量实验证明了我们的聚类框架在挖掘实体属性同义词方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining entity attribute synonyms via compact clustering
Entity attribute values, such as "lord of the rings" for movie.title or "infant" for shoe.gender, are atomic components of entity expressions. Discovering alternative surface forms of attribute values is important for improving entity recognition and retrieval. In this work, we propose a novel compact clustering framework to jointly identify synonyms for a set of attribute values. The framework can integrate signals from multiple information sources into a similarity function between attribute values. And the weights of these signals are optimized in an unsupervised manner. Extensive experiments across multiple domains demonstrate the effectiveness of our clustering framework for mining entity attribute synonyms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信