{"title":"玻尔兹曼方程的下界,其规律性随时间而变弱","authors":"Lingbing He, Jie Ji, Ling-Xuan Shao","doi":"10.3934/krm.2021020","DOIUrl":null,"url":null,"abstract":"As a first step towards the general global-in-time stability for the Boltzmann equation with soft potentials, in the present work, we prove the quantitative lower bounds for the equation under the following two assumptions, which stem from the available energy estimates, i.e. (ⅰ). the hydrodynamic quantities (local mass, local energy, and local entropy density) are bounded (from below or from above) uniformly in time, (ⅱ). the Sobolev regularity for the solution grows tempered with time.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bound for the Boltzmann equation whose regularity grows tempered with time\",\"authors\":\"Lingbing He, Jie Ji, Ling-Xuan Shao\",\"doi\":\"10.3934/krm.2021020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a first step towards the general global-in-time stability for the Boltzmann equation with soft potentials, in the present work, we prove the quantitative lower bounds for the equation under the following two assumptions, which stem from the available energy estimates, i.e. (ⅰ). the hydrodynamic quantities (local mass, local energy, and local entropy density) are bounded (from below or from above) uniformly in time, (ⅱ). the Sobolev regularity for the solution grows tempered with time.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lower bound for the Boltzmann equation whose regularity grows tempered with time
As a first step towards the general global-in-time stability for the Boltzmann equation with soft potentials, in the present work, we prove the quantitative lower bounds for the equation under the following two assumptions, which stem from the available energy estimates, i.e. (ⅰ). the hydrodynamic quantities (local mass, local energy, and local entropy density) are bounded (from below or from above) uniformly in time, (ⅱ). the Sobolev regularity for the solution grows tempered with time.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.