{"title":"用核方法对区间数据进行非参数推理","authors":"Hoyoung Park, J. Loh, Woncheol Jang","doi":"10.1080/10485252.2022.2160980","DOIUrl":null,"url":null,"abstract":"ABSTRACT Symbolic data have become increasingly popular in the era of big data. In this paper, we consider density estimation and regression for interval-valued data, a special type of symbolic data, common in astronomy and official statistics. We propose kernel estimators with adaptive bandwidths to account for variability of each interval. Specifically, we derive cross-validation bandwidth selectors for density estimation and extend the Nadaraya–Watson estimator for regression with interval data. We assess the performance of the proposed methods in comparison with existing kernel methods by extensive simulation studies and real data analysis.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"21 1","pages":"455 - 473"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric inference for interval data using kernel methods\",\"authors\":\"Hoyoung Park, J. Loh, Woncheol Jang\",\"doi\":\"10.1080/10485252.2022.2160980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Symbolic data have become increasingly popular in the era of big data. In this paper, we consider density estimation and regression for interval-valued data, a special type of symbolic data, common in astronomy and official statistics. We propose kernel estimators with adaptive bandwidths to account for variability of each interval. Specifically, we derive cross-validation bandwidth selectors for density estimation and extend the Nadaraya–Watson estimator for regression with interval data. We assess the performance of the proposed methods in comparison with existing kernel methods by extensive simulation studies and real data analysis.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"21 1\",\"pages\":\"455 - 473\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2022.2160980\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2160980","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric inference for interval data using kernel methods
ABSTRACT Symbolic data have become increasingly popular in the era of big data. In this paper, we consider density estimation and regression for interval-valued data, a special type of symbolic data, common in astronomy and official statistics. We propose kernel estimators with adaptive bandwidths to account for variability of each interval. Specifically, we derive cross-validation bandwidth selectors for density estimation and extend the Nadaraya–Watson estimator for regression with interval data. We assess the performance of the proposed methods in comparison with existing kernel methods by extensive simulation studies and real data analysis.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.