{"title":"水的第二个临界点在自然界中真的存在吗?","authors":"F. Hirata","doi":"10.5488/CMP.25.23601","DOIUrl":null,"url":null,"abstract":"In the past decade, a literary phrase “No man's land” has been flooded in the scientific papers. The expression is used to describe a meta-stable region in the phase-diagram that cannot be accessed by experiments. It has been claimed based on the molecular dynamics (MD) simulation that there is a critical point, or the second critical point (SCP), in the “no man's land,” and it has created a big dispute in the field of science. It is proved in the present paper that the hypothesis of SCP is completely against the rigorous theorem of thermodynamics, referred as the Gibbs phase rule. The reason why the simulations have found SCP erroneously is merely because the method violates the requirement which all the statistical-mechanics treatments should satisfy to reproduce the thermodynamics. That is the thermodynamic limit. It is clarified what is the identity of the ``liquid-liquid phase transition'' and SCP in pure liquids, discovered by the simulations and by some experiments. In order to explain the physics of liquid-liquid phase transition observed experimentally in single component liquids, a new concept is proposed.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Does the second critical-point of water really exist in nature?\",\"authors\":\"F. Hirata\",\"doi\":\"10.5488/CMP.25.23601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, a literary phrase “No man's land” has been flooded in the scientific papers. The expression is used to describe a meta-stable region in the phase-diagram that cannot be accessed by experiments. It has been claimed based on the molecular dynamics (MD) simulation that there is a critical point, or the second critical point (SCP), in the “no man's land,” and it has created a big dispute in the field of science. It is proved in the present paper that the hypothesis of SCP is completely against the rigorous theorem of thermodynamics, referred as the Gibbs phase rule. The reason why the simulations have found SCP erroneously is merely because the method violates the requirement which all the statistical-mechanics treatments should satisfy to reproduce the thermodynamics. That is the thermodynamic limit. It is clarified what is the identity of the ``liquid-liquid phase transition'' and SCP in pure liquids, discovered by the simulations and by some experiments. In order to explain the physics of liquid-liquid phase transition observed experimentally in single component liquids, a new concept is proposed.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.25.23601\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.23601","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Does the second critical-point of water really exist in nature?
In the past decade, a literary phrase “No man's land” has been flooded in the scientific papers. The expression is used to describe a meta-stable region in the phase-diagram that cannot be accessed by experiments. It has been claimed based on the molecular dynamics (MD) simulation that there is a critical point, or the second critical point (SCP), in the “no man's land,” and it has created a big dispute in the field of science. It is proved in the present paper that the hypothesis of SCP is completely against the rigorous theorem of thermodynamics, referred as the Gibbs phase rule. The reason why the simulations have found SCP erroneously is merely because the method violates the requirement which all the statistical-mechanics treatments should satisfy to reproduce the thermodynamics. That is the thermodynamic limit. It is clarified what is the identity of the ``liquid-liquid phase transition'' and SCP in pure liquids, discovered by the simulations and by some experiments. In order to explain the physics of liquid-liquid phase transition observed experimentally in single component liquids, a new concept is proposed.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.