关于最多包含四条边的所有子结构的数目

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
S. Gong, Liping Zhang, Changbao Su
{"title":"关于最多包含四条边的所有子结构的数目","authors":"S. Gong, Liping Zhang, Changbao Su","doi":"10.46793/match.89-2.327g","DOIUrl":null,"url":null,"abstract":"Let G be a simple graph with order n , n ≥ 5, and adjacency matrix A ( G ). In this paper, we determine the number of all substructures having at most four edges in terms of its adjacency matrix A ( G ) together with some graph invariants determined by A ( G ). Then, as applications, we provide an algebraic expression for the second Zagreb index and || A 4 || of a graph.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Number of All Substructures Containing at Most Four Edges\",\"authors\":\"S. Gong, Liping Zhang, Changbao Su\",\"doi\":\"10.46793/match.89-2.327g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a simple graph with order n , n ≥ 5, and adjacency matrix A ( G ). In this paper, we determine the number of all substructures having at most four edges in terms of its adjacency matrix A ( G ) together with some graph invariants determined by A ( G ). Then, as applications, we provide an algebraic expression for the second Zagreb index and || A 4 || of a graph.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.89-2.327g\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-2.327g","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设G为n阶简单图,n≥5,邻接矩阵a (G)。本文利用图的邻接矩阵A (G)和由A (G)决定的图不变量,确定了图中最多有四条边的所有子结构的个数。然后,作为应用,我们给出了图的第二次Zagreb索引和a_4的代数表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Number of All Substructures Containing at Most Four Edges
Let G be a simple graph with order n , n ≥ 5, and adjacency matrix A ( G ). In this paper, we determine the number of all substructures having at most four edges in terms of its adjacency matrix A ( G ) together with some graph invariants determined by A ( G ). Then, as applications, we provide an algebraic expression for the second Zagreb index and || A 4 || of a graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信