与巴克斯特数相关的不等式

Pub Date : 2023-06-30 DOI:10.3336/gm.58.1.01
J. Zhao
{"title":"与巴克斯特数相关的不等式","authors":"J. Zhao","doi":"10.3336/gm.58.1.01","DOIUrl":null,"url":null,"abstract":"The Baxter numbers \\(B_n\\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \\(n\\) nodes.\nThe Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\\(\\mathcal{L}\\)-\\(\\mathcal{P}\\)) class of real entire functions, and the \\(\\mathcal{L}\\)-\\(\\mathcal{P}\\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.\nIn this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \\(\\{B_{n+1}/B_n\\}_{n\\geqslant 0}\\) and \\(\\{\\hspace{-2.5pt}\\sqrt[n]{B_n}\\}_{n\\geqslant 1}\\).\nMonotonicity of the sequence \\(\\{\\hspace{-2.5pt}\\sqrt[n]{B_n}\\}_{n\\geqslant 1}\\) is also obtained. Finally, we prove that the sequences \\(\\{B_n/n!\\}_{n\\geqslant 2}\\) and \\(\\{B_{n+1}B_n^{-1}/n!\\}_{n\\geqslant 2}\\) satisfy the higher order Turán inequalities.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities associated with the Baxter numbers\",\"authors\":\"J. Zhao\",\"doi\":\"10.3336/gm.58.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Baxter numbers \\\\(B_n\\\\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \\\\(n\\\\) nodes.\\nThe Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\\\\(\\\\mathcal{L}\\\\)-\\\\(\\\\mathcal{P}\\\\)) class of real entire functions, and the \\\\(\\\\mathcal{L}\\\\)-\\\\(\\\\mathcal{P}\\\\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.\\nIn this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \\\\(\\\\{B_{n+1}/B_n\\\\}_{n\\\\geqslant 0}\\\\) and \\\\(\\\\{\\\\hspace{-2.5pt}\\\\sqrt[n]{B_n}\\\\}_{n\\\\geqslant 1}\\\\).\\nMonotonicity of the sequence \\\\(\\\\{\\\\hspace{-2.5pt}\\\\sqrt[n]{B_n}\\\\}_{n\\\\geqslant 1}\\\\) is also obtained. Finally, we prove that the sequences \\\\(\\\\{B_n/n!\\\\}_{n\\\\geqslant 2}\\\\) and \\\\(\\\\{B_{n+1}B_n^{-1}/n!\\\\}_{n\\\\geqslant 2}\\\\) satisfy the higher order Turán inequalities.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Baxter数\(B_n\)列举了许多代数和组合对象,如Malvenuto-Reutenauer Hopf代数的子代数基和\(n\)节点上的孪生二叉树对。Turán不等式和高阶Turán不等式与Laguerre-Pólya (\(\mathcal{L}\) - \(\mathcal{P}\))实数整函数类有关,\(\mathcal{L}\) - \(\mathcal{P}\)类与黎曼假设关系密切。Turán类型不等式受到了广泛的关注。在本文中,我们主要关注Turán型不等式,或者更准确地说,对数行为,以及与Baxter数相关的高阶Turán不等式。证明了序列\(\{B_{n+1}/B_n\}_{n\geqslant 0}\)和\(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\)的Turán不等式(或等价的对数凹性),并得到了序列\(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\)的单调性。最后证明了序列\(\{B_n/n!\}_{n\geqslant 2}\)和\(\{B_{n+1}B_n^{-1}/n!\}_{n\geqslant 2}\)满足高阶Turán不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inequalities associated with the Baxter numbers
The Baxter numbers \(B_n\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \(n\) nodes. The Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\(\mathcal{L}\)-\(\mathcal{P}\)) class of real entire functions, and the \(\mathcal{L}\)-\(\mathcal{P}\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention. In this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \(\{B_{n+1}/B_n\}_{n\geqslant 0}\) and \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\). Monotonicity of the sequence \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\) is also obtained. Finally, we prove that the sequences \(\{B_n/n!\}_{n\geqslant 2}\) and \(\{B_{n+1}B_n^{-1}/n!\}_{n\geqslant 2}\) satisfy the higher order Turán inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信