{"title":"与巴克斯特数相关的不等式","authors":"J. Zhao","doi":"10.3336/gm.58.1.01","DOIUrl":null,"url":null,"abstract":"The Baxter numbers \\(B_n\\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \\(n\\) nodes.\nThe Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\\(\\mathcal{L}\\)-\\(\\mathcal{P}\\)) class of real entire functions, and the \\(\\mathcal{L}\\)-\\(\\mathcal{P}\\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.\nIn this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \\(\\{B_{n+1}/B_n\\}_{n\\geqslant 0}\\) and \\(\\{\\hspace{-2.5pt}\\sqrt[n]{B_n}\\}_{n\\geqslant 1}\\).\nMonotonicity of the sequence \\(\\{\\hspace{-2.5pt}\\sqrt[n]{B_n}\\}_{n\\geqslant 1}\\) is also obtained. Finally, we prove that the sequences \\(\\{B_n/n!\\}_{n\\geqslant 2}\\) and \\(\\{B_{n+1}B_n^{-1}/n!\\}_{n\\geqslant 2}\\) satisfy the higher order Turán inequalities.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities associated with the Baxter numbers\",\"authors\":\"J. Zhao\",\"doi\":\"10.3336/gm.58.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Baxter numbers \\\\(B_n\\\\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \\\\(n\\\\) nodes.\\nThe Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\\\\(\\\\mathcal{L}\\\\)-\\\\(\\\\mathcal{P}\\\\)) class of real entire functions, and the \\\\(\\\\mathcal{L}\\\\)-\\\\(\\\\mathcal{P}\\\\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.\\nIn this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \\\\(\\\\{B_{n+1}/B_n\\\\}_{n\\\\geqslant 0}\\\\) and \\\\(\\\\{\\\\hspace{-2.5pt}\\\\sqrt[n]{B_n}\\\\}_{n\\\\geqslant 1}\\\\).\\nMonotonicity of the sequence \\\\(\\\\{\\\\hspace{-2.5pt}\\\\sqrt[n]{B_n}\\\\}_{n\\\\geqslant 1}\\\\) is also obtained. Finally, we prove that the sequences \\\\(\\\\{B_n/n!\\\\}_{n\\\\geqslant 2}\\\\) and \\\\(\\\\{B_{n+1}B_n^{-1}/n!\\\\}_{n\\\\geqslant 2}\\\\) satisfy the higher order Turán inequalities.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Baxter numbers \(B_n\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \(n\) nodes.
The Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\(\mathcal{L}\)-\(\mathcal{P}\)) class of real entire functions, and the \(\mathcal{L}\)-\(\mathcal{P}\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.
In this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \(\{B_{n+1}/B_n\}_{n\geqslant 0}\) and \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\).
Monotonicity of the sequence \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\) is also obtained. Finally, we prove that the sequences \(\{B_n/n!\}_{n\geqslant 2}\) and \(\{B_{n+1}B_n^{-1}/n!\}_{n\geqslant 2}\) satisfy the higher order Turán inequalities.