Yang Li , Xiaoyu Liang , Yefeng Yu , Dongfang Wang , Feng Lin
{"title":"单晶镍基高温合金增材制造研究进展","authors":"Yang Li , Xiaoyu Liang , Yefeng Yu , Dongfang Wang , Feng Lin","doi":"10.1016/j.cjmeam.2022.100019","DOIUrl":null,"url":null,"abstract":"<div><p>The conventional fabrication process for single-crystal nickel-based superalloy materials is directional solidification, which is classified as casting. With the rapid development of additive manufacturing (AM) technologies, a novel process for fabricating single-crystal superalloys has become possible. This article reviews recent research on the AM of single-crystal nickel-based superalloys. Laser AM technologies, particularly directed energy deposition, are mainly used to repair single-crystal materials. Electron beam powder bed fusion is an innovative method for the direct fabrication of single-crystal materials. Accordingly, the mechanisms of single-crystal formation during AM are analyzed to elucidate the potential of this process route. Furthermore, this article discusses the challenges faced by AM for single-crystal fabrication, and provides perspectives on the trends of future developments.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"1 1","pages":"Article 100019"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772665722000095/pdfft?md5=0394f062c123df57542498060be87c91&pid=1-s2.0-S2772665722000095-main.pdf","citationCount":"25","resultStr":"{\"title\":\"Review on Additive Manufacturing of Single-Crystal Nickel-based Superalloys\",\"authors\":\"Yang Li , Xiaoyu Liang , Yefeng Yu , Dongfang Wang , Feng Lin\",\"doi\":\"10.1016/j.cjmeam.2022.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conventional fabrication process for single-crystal nickel-based superalloy materials is directional solidification, which is classified as casting. With the rapid development of additive manufacturing (AM) technologies, a novel process for fabricating single-crystal superalloys has become possible. This article reviews recent research on the AM of single-crystal nickel-based superalloys. Laser AM technologies, particularly directed energy deposition, are mainly used to repair single-crystal materials. Electron beam powder bed fusion is an innovative method for the direct fabrication of single-crystal materials. Accordingly, the mechanisms of single-crystal formation during AM are analyzed to elucidate the potential of this process route. Furthermore, this article discusses the challenges faced by AM for single-crystal fabrication, and provides perspectives on the trends of future developments.</p></div>\",\"PeriodicalId\":100243,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"volume\":\"1 1\",\"pages\":\"Article 100019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000095/pdfft?md5=0394f062c123df57542498060be87c91&pid=1-s2.0-S2772665722000095-main.pdf\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665722000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review on Additive Manufacturing of Single-Crystal Nickel-based Superalloys
The conventional fabrication process for single-crystal nickel-based superalloy materials is directional solidification, which is classified as casting. With the rapid development of additive manufacturing (AM) technologies, a novel process for fabricating single-crystal superalloys has become possible. This article reviews recent research on the AM of single-crystal nickel-based superalloys. Laser AM technologies, particularly directed energy deposition, are mainly used to repair single-crystal materials. Electron beam powder bed fusion is an innovative method for the direct fabrication of single-crystal materials. Accordingly, the mechanisms of single-crystal formation during AM are analyzed to elucidate the potential of this process route. Furthermore, this article discusses the challenges faced by AM for single-crystal fabrication, and provides perspectives on the trends of future developments.