Sydney Sherman, S. Jogee, Jonathan Florez, Matthew L. Stevans, L. Kawinwanichakij, I. Wold, S. Finkelstein, C. Papovich, R. Ciardullo, C. Gronwall, S. Cora, Tomás Hough, C. Vega-Martínez
{"title":"在宇宙的正午,研究不断增长的大质量静止星系","authors":"Sydney Sherman, S. Jogee, Jonathan Florez, Matthew L. Stevans, L. Kawinwanichakij, I. Wold, S. Finkelstein, C. Papovich, R. Ciardullo, C. Gronwall, S. Cora, Tomás Hough, C. Vega-Martínez","doi":"10.1093/mnras/staa3167","DOIUrl":null,"url":null,"abstract":"We explore the buildup of quiescent galaxies using a sample of 28,469 massive ($M_\\star \\ge 10^{11}$M$_\\odot$) galaxies at redshifts $1.5<z<3.0$, drawn from a 17.5 deg$^2$ area (0.33 Gpc$^3$ comoving volume at these redshifts). This allows for a robust study of the quiescent fraction as a function of mass at $1.5<z<3.0$ with a sample $\\sim$40 times larger at log($M_{\\star}$/$\\rm M_{\\odot}$)$\\ge11.5$ than previous studies. We derive the quiescent fraction using three methods: specific star-formation rate, distance from the main sequence, and UVJ color-color selection. All three methods give similar values at $1.5<z<2.0$, however the results differ by up to a factor of two at $2.0<z<3.0$. At redshifts $1.5 < z < 3.0$ the quiescent fraction increases as a function of stellar mass. By $z=2$, only 3.3 Gyr after the Big Bang, the universe has quenched $\\sim$25% of $M_\\star = 10^{11}$M$_\\odot$ galaxies and $\\sim$45% of $M_\\star = 10^{12}$M$_\\odot$ galaxies. We discuss physical mechanisms across a range of epochs and environments that could explain our results. We compare our results with predictions from hydrodynamical simulations SIMBA and IllustrisTNG and semi-analytic models (SAMs) SAG, SAGE, and Galacticus. The quiescent fraction from IllustrisTNG is higher than our empirical result by a factor of $2-5$, while those from SIMBA and the three SAMs are lower by a factor of $1.5-10$ at $1.5<z<3.0$.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Investigating the growing population of massive quiescent galaxies at cosmic noon\",\"authors\":\"Sydney Sherman, S. Jogee, Jonathan Florez, Matthew L. Stevans, L. Kawinwanichakij, I. Wold, S. Finkelstein, C. Papovich, R. Ciardullo, C. Gronwall, S. Cora, Tomás Hough, C. Vega-Martínez\",\"doi\":\"10.1093/mnras/staa3167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the buildup of quiescent galaxies using a sample of 28,469 massive ($M_\\\\star \\\\ge 10^{11}$M$_\\\\odot$) galaxies at redshifts $1.5<z<3.0$, drawn from a 17.5 deg$^2$ area (0.33 Gpc$^3$ comoving volume at these redshifts). This allows for a robust study of the quiescent fraction as a function of mass at $1.5<z<3.0$ with a sample $\\\\sim$40 times larger at log($M_{\\\\star}$/$\\\\rm M_{\\\\odot}$)$\\\\ge11.5$ than previous studies. We derive the quiescent fraction using three methods: specific star-formation rate, distance from the main sequence, and UVJ color-color selection. All three methods give similar values at $1.5<z<2.0$, however the results differ by up to a factor of two at $2.0<z<3.0$. At redshifts $1.5 < z < 3.0$ the quiescent fraction increases as a function of stellar mass. By $z=2$, only 3.3 Gyr after the Big Bang, the universe has quenched $\\\\sim$25% of $M_\\\\star = 10^{11}$M$_\\\\odot$ galaxies and $\\\\sim$45% of $M_\\\\star = 10^{12}$M$_\\\\odot$ galaxies. We discuss physical mechanisms across a range of epochs and environments that could explain our results. We compare our results with predictions from hydrodynamical simulations SIMBA and IllustrisTNG and semi-analytic models (SAMs) SAG, SAGE, and Galacticus. The quiescent fraction from IllustrisTNG is higher than our empirical result by a factor of $2-5$, while those from SIMBA and the three SAMs are lower by a factor of $1.5-10$ at $1.5<z<3.0$.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}