交型学科的自然演绎与归一化证明

CoRR Pub Date : 2019-04-23 DOI:10.4204/EPTCS.293.3
Federico Aschieri
{"title":"交型学科的自然演绎与归一化证明","authors":"Federico Aschieri","doi":"10.4204/EPTCS.293.3","DOIUrl":null,"url":null,"abstract":"Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"18 1","pages":"29-37"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Deduction and Normalization Proofs for the Intersection Type Discipline\",\"authors\":\"Federico Aschieri\",\"doi\":\"10.4204/EPTCS.293.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"18 1\",\"pages\":\"29-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.293.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.293.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过改进和扩展Retore之前的工作,我们通过自然演绎开发了一种系统的交叉类型方法。我们展示了如何一步的β还原可以被看作是执行,在类型派生的水平,普拉维茨约简并行。然后,我们得到了关于交集类型归一化的主要定理,作为主题约简的直接结果:对于系统D,强归一化,对于系统,对于没有的可类型项,最左边的约简终止。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Deduction and Normalization Proofs for the Intersection Type Discipline
Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信