{"title":"交型学科的自然演绎与归一化证明","authors":"Federico Aschieri","doi":"10.4204/EPTCS.293.3","DOIUrl":null,"url":null,"abstract":"Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"18 1","pages":"29-37"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Deduction and Normalization Proofs for the Intersection Type Discipline\",\"authors\":\"Federico Aschieri\",\"doi\":\"10.4204/EPTCS.293.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"18 1\",\"pages\":\"29-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.293.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.293.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Natural Deduction and Normalization Proofs for the Intersection Type Discipline
Refining and extending previous work by Retore, we develop a systematic approach to intersection types via natural deduction. We show how a step of beta reduction can be seen as performing, at the level of typing derivations, Prawitz reductions in parallel. Then we derive as immediate consequences of Subject Reduction the main theorems about normalization for intersection types: for system D, strong normalization, for system Omega, the leftmost reduction termination for terms typable without Omega.