多模态人形机器人

S. Thoshith, Samarth Mulgund, Praveen Sindgi, N. Yogesh, R. Kumaraswamy
{"title":"多模态人形机器人","authors":"S. Thoshith, Samarth Mulgund, Praveen Sindgi, N. Yogesh, R. Kumaraswamy","doi":"10.1109/WISPNET.2018.8538449","DOIUrl":null,"url":null,"abstract":"Human-Robot Interaction deals with the direct use of robotic systems to interact with humans in particular context. In this paper, a humanoid is developed which can understand the commands in the form of speech and gesture. A connectedword speaker-independent speech recognition system is built using Mel Frequency Cepstral Coefficient and Gaussian Mixture Model in Kaldi toolkit. Gesture recognition is implemented using Convolutional Neural Network.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Modal Humanoid Robot\",\"authors\":\"S. Thoshith, Samarth Mulgund, Praveen Sindgi, N. Yogesh, R. Kumaraswamy\",\"doi\":\"10.1109/WISPNET.2018.8538449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-Robot Interaction deals with the direct use of robotic systems to interact with humans in particular context. In this paper, a humanoid is developed which can understand the commands in the form of speech and gesture. A connectedword speaker-independent speech recognition system is built using Mel Frequency Cepstral Coefficient and Gaussian Mixture Model in Kaldi toolkit. Gesture recognition is implemented using Convolutional Neural Network.\",\"PeriodicalId\":6858,\"journal\":{\"name\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"volume\":\"10 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISPNET.2018.8538449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISPNET.2018.8538449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人机交互是指在特定环境中直接使用机器人系统与人类进行交互。本文研制了一种能够理解语音和手势指令的类人机器人。利用Kaldi工具包中的Mel频率倒谱系数和高斯混合模型,构建了一个独立于连词说话人的语音识别系统。手势识别是用卷积神经网络实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal Humanoid Robot
Human-Robot Interaction deals with the direct use of robotic systems to interact with humans in particular context. In this paper, a humanoid is developed which can understand the commands in the form of speech and gesture. A connectedword speaker-independent speech recognition system is built using Mel Frequency Cepstral Coefficient and Gaussian Mixture Model in Kaldi toolkit. Gesture recognition is implemented using Convolutional Neural Network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信