{"title":"基于遗传算法的太阳能最大功率跟踪建模","authors":"M. Jamiati","doi":"10.5829/ijee.2021.12.02.03","DOIUrl":null,"url":null,"abstract":"This paper presents a model of solar cell by using MATLAB SIMULINK. P-V, I-V and P-I characteristics were studied for various values of irradiance at constant temperature. Genetic Algorithm (GA) was used for maximum power point tracking (MPPT) of Photovoltaic (PV) system using the direct control method. The main objective of this paper is to find out the optimal angle, which is used for the positional control of solar module and optimal power tracking. The principle of GAs is searching for the maximum of fitness function and not for the minimum of power derivation; this gives more stability and minimize oscillation of output power around the maximum power point (MPP). The main contribution of the proposed scheme is the elimination of PI control loop which normally exists to manipulate the duty cycle. Simulation results indicate that the proposed controller outperforms the others method for all type of environmental conditions.","PeriodicalId":14542,"journal":{"name":"Iranian Journal of Energy and Environment","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling of Maximum Solar Power Tracking by Genetic Algorithm Method\",\"authors\":\"M. Jamiati\",\"doi\":\"10.5829/ijee.2021.12.02.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model of solar cell by using MATLAB SIMULINK. P-V, I-V and P-I characteristics were studied for various values of irradiance at constant temperature. Genetic Algorithm (GA) was used for maximum power point tracking (MPPT) of Photovoltaic (PV) system using the direct control method. The main objective of this paper is to find out the optimal angle, which is used for the positional control of solar module and optimal power tracking. The principle of GAs is searching for the maximum of fitness function and not for the minimum of power derivation; this gives more stability and minimize oscillation of output power around the maximum power point (MPP). The main contribution of the proposed scheme is the elimination of PI control loop which normally exists to manipulate the duty cycle. Simulation results indicate that the proposed controller outperforms the others method for all type of environmental conditions.\",\"PeriodicalId\":14542,\"journal\":{\"name\":\"Iranian Journal of Energy and Environment\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2021.12.02.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2021.12.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling of Maximum Solar Power Tracking by Genetic Algorithm Method
This paper presents a model of solar cell by using MATLAB SIMULINK. P-V, I-V and P-I characteristics were studied for various values of irradiance at constant temperature. Genetic Algorithm (GA) was used for maximum power point tracking (MPPT) of Photovoltaic (PV) system using the direct control method. The main objective of this paper is to find out the optimal angle, which is used for the positional control of solar module and optimal power tracking. The principle of GAs is searching for the maximum of fitness function and not for the minimum of power derivation; this gives more stability and minimize oscillation of output power around the maximum power point (MPP). The main contribution of the proposed scheme is the elimination of PI control loop which normally exists to manipulate the duty cycle. Simulation results indicate that the proposed controller outperforms the others method for all type of environmental conditions.