引入无效率溢出的空间随机前沿模型

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Federica Galli
{"title":"引入无效率溢出的空间随机前沿模型","authors":"Federica Galli","doi":"10.1093/jrsssc/qlad012","DOIUrl":null,"url":null,"abstract":"\n This paper develops a spatial Durbin stochastic frontier model for panel data introducing spillover effects in the determinants of technical efficiency (SDF-STE). The model nests several existing spatial and non-spatial stochastic frontier specifications and is estimated using maximum-likelihood techniques. Estimates are shown to be unbiased even for small sample sizes and for alternative specifications of the spatial weight matrix implementing different Monte Carlo simulations. Finally, an application to the Italian accommodation sector is provided. Empirical findings suggest the relevance of the SDF-STE model in capturing labour productivity and knowledge spillover effects.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatial stochastic frontier model introducing inefficiency spillovers\",\"authors\":\"Federica Galli\",\"doi\":\"10.1093/jrsssc/qlad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper develops a spatial Durbin stochastic frontier model for panel data introducing spillover effects in the determinants of technical efficiency (SDF-STE). The model nests several existing spatial and non-spatial stochastic frontier specifications and is estimated using maximum-likelihood techniques. Estimates are shown to be unbiased even for small sample sizes and for alternative specifications of the spatial weight matrix implementing different Monte Carlo simulations. Finally, an application to the Italian accommodation sector is provided. Empirical findings suggest the relevance of the SDF-STE model in capturing labour productivity and knowledge spillover effects.\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了面板数据的空间Durbin随机前沿模型,引入了技术效率决定因素(SDF-STE)的溢出效应。该模型嵌套了几种现有的空间和非空间随机前沿规范,并使用最大似然技术进行估计。即使对于小样本量和实现不同蒙特卡罗模拟的空间权重矩阵的替代规范,估计也显示为无偏的。最后,提供了意大利住宿部门的申请。实证结果表明,SDF-STE模型在捕捉劳动生产率和知识溢出效应方面具有相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatial stochastic frontier model introducing inefficiency spillovers
This paper develops a spatial Durbin stochastic frontier model for panel data introducing spillover effects in the determinants of technical efficiency (SDF-STE). The model nests several existing spatial and non-spatial stochastic frontier specifications and is estimated using maximum-likelihood techniques. Estimates are shown to be unbiased even for small sample sizes and for alternative specifications of the spatial weight matrix implementing different Monte Carlo simulations. Finally, an application to the Italian accommodation sector is provided. Empirical findings suggest the relevance of the SDF-STE model in capturing labour productivity and knowledge spillover effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信