rickart实c *-代数与包络rickart c *-代数的联系

IF 0.4 Q4 MATHEMATICS
A.A. Rakhimov, N.V. Raxmonova, Z. Salleh
{"title":"rickart实c *-代数与包络rickart c *-代数的联系","authors":"A.A. Rakhimov, N.V. Raxmonova, Z. Salleh","doi":"10.46754/jmsi.2022.12.003","DOIUrl":null,"url":null,"abstract":"In the paper, Rickart complex and real C*-algebra are considered. For Rickart’s real C*-algebra, its connection with the enveloping (complex) C*-algebra is studied. It is shown that the fact that A is a Rickart real C*-algebra does not imply that a complexification A +i A of A is a Rickart (complex) C*-algebra. Proved that if A is a real C*-algebra and A +i A is a Rickart C*-algebra, then A +i A is a Rickart real C*-algebra. It is shown that there exists a Rickart real C*-algebra whose projection lattice is not complete.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"17 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CONNECTION BETWEEN RICKART REAL C*-ALGEBRA AND ENVELOPING RICKART C*-ALGEBRA\",\"authors\":\"A.A. Rakhimov, N.V. Raxmonova, Z. Salleh\",\"doi\":\"10.46754/jmsi.2022.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, Rickart complex and real C*-algebra are considered. For Rickart’s real C*-algebra, its connection with the enveloping (complex) C*-algebra is studied. It is shown that the fact that A is a Rickart real C*-algebra does not imply that a complexification A +i A of A is a Rickart (complex) C*-algebra. Proved that if A is a real C*-algebra and A +i A is a Rickart C*-algebra, then A +i A is a Rickart real C*-algebra. It is shown that there exists a Rickart real C*-algebra whose projection lattice is not complete.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46754/jmsi.2022.12.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46754/jmsi.2022.12.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了ricart复C*代数和实C*代数。对于ricart的实C*-代数,研究了它与包络(复)C*-代数的联系。证明了A是ricart实C*-代数的事实并不意味着A的复化A + ia是ricart(复)C*-代数。证明了如果A是实C*-代数,A +i A是里克特C*-代数,则A +i A是里克特实C*-代数。证明了存在一个投影格不完全的ricart实C*代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CONNECTION BETWEEN RICKART REAL C*-ALGEBRA AND ENVELOPING RICKART C*-ALGEBRA
In the paper, Rickart complex and real C*-algebra are considered. For Rickart’s real C*-algebra, its connection with the enveloping (complex) C*-algebra is studied. It is shown that the fact that A is a Rickart real C*-algebra does not imply that a complexification A +i A of A is a Rickart (complex) C*-algebra. Proved that if A is a real C*-algebra and A +i A is a Rickart C*-algebra, then A +i A is a Rickart real C*-algebra. It is shown that there exists a Rickart real C*-algebra whose projection lattice is not complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信